首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonhomologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells. A critical step in this process is DNA ligation, involving the Xrcc4-DNA ligase IV complex. DNA end processing is often a prerequisite for ligation, but the coordination of these events is poorly understood. We show that polynucleotide kinase (PNK), with its ability to process ionizing radiation-induced 5'-OH and 3'-phosphate DNA termini, functions in NHEJ via an FHA-dependent interaction with CK2-phosphorylated Xrcc4. Analysis of the PNK FHA-Xrcc4 interaction revealed that the PNK FHA domain binds phosphopeptides with a unique selectivity among FHA domains. Disruption of the Xrcc4-PNK interaction in vivo is associated with increased radiosensitivity and slower repair kinetics of DSBs, in conjunction with a diminished efficiency of DNA end joining in vitro. Therefore, these results suggest a new role for Xrcc4 in the coordination of DNA end processing with DNA ligation.  相似文献   

2.
The non-homologous end-joining (NHEJ) pathway repairs DNA double-strand breaks (DSBs) in all domains of life. Archaea and bacteria utilize a conserved set of multifunctional proteins in a pathway termed Archaeo-Prokaryotic (AP) NHEJ that facilitates DSB repair. Archaeal NHEJ polymerases (Pol) are capable of strand displacement synthesis, whilst filling DNA gaps or partially annealed DNA ends, which can give rise to unligatable intermediates. However, an associated NHEJ phosphoesterase (PE) resects these products to ensure that efficient ligation occurs. Here, we describe the crystal structures of these archaeal (Methanocella paludicola) NHEJ nuclease and polymerase enzymes, demonstrating their strict structural conservation with their bacterial NHEJ counterparts. Structural analysis, in conjunction with biochemical studies, has uncovered the molecular basis for DNA strand displacement synthesis in AP-NHEJ, revealing the mechanisms that enable Pol and PE to displace annealed bases to facilitate their respective roles in DSB repair.  相似文献   

3.
Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3′ phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo.  相似文献   

4.
PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/DNA ligase IV complex in chromatin, suggesting that PARP-3 and APLF accelerate DNA ligation during nonhomologous end-joining (NHEJ). Consistent with this, we show that class switch recombination in Aplf(-/-) B cells is biased toward microhomology-mediated end-joining, a pathway that operates in the absence of XRCC4/DNA ligase IV, and that the requirement for PARP-3 and APLF for NHEJ is circumvented by overexpression of XRCC4/DNA ligase IV. These data identify molecular roles for PARP-3 and APLF in chromosomal DNA double-strand break repair reactions.  相似文献   

5.
Nonhomologous end-joining (NHEJ) is the major mammalian DNA double-strand break (DSB) repair pathway of DSBs induced by DNA damaging agents. NHEJ is initiated by the recognition of DSBs by the DNA end-binding heterodimer, Ku, and the final step of DNA end-joining is accomplished by the XRCC4-DNA ligase IV complex. We demonstrate that Aprataxin and PNK-like factor (APLF), an endo/exonuclease with an FHA domain and unique zinc fingers (ZFs), interacts with both Ku and XRCC4-DNA ligase IV in human cells. The interaction of APLF with XRCC4-DNA ligase IV is FHA- and phospho-dependent, and is mediated by CK2 phosphorylation of XRCC4 in vitro. In contrast, APLF associates with Ku independently of the FHA and ZF domains, and APLF complexes with Ku at DNA ends. APLF undergoes ionizing radiation (IR) induced ATM-dependent hyperphosphorylation at serine residue 116, which is highly conserved across mammalian APLF homologues. We demonstrate further that depletion of APLF in human cells by siRNA is associated with impaired NHEJ. Collectively, these results suggest that APLF is an ATM target that is involved in NHEJ and facilitates DSB repair, likely via interactions with Ku and XRCC4-DNA ligase IV.  相似文献   

6.
In eukaryotic cells, the repair of DNA double strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway is critical for genome stability. Until recently it was assumed that this DSB repair pathway was restricted to the eukarya. However, a functionally homologous prokaryotic NHEJ repair apparatus has now been identified and characterised. In contrast to the complex eukaryotic system, bacterial NHEJ appears to require only two proteins, Ku and a multifunctional DNA ligase, which form a two-component repair complex at the termini of DSBs. Together, these DNA repair factors possess all of the break-recognition, end-processing and ligation activities required to facilitate the complex task of DSB repair, both in vitro and in vivo. Our recent findings lay the foundation for understanding the molecular mechanisms that co-ordinate the processing and joining of DSBs by NHEJ in bacteria and also provides a conceptual framework for delineating the end-processing reactions in eukaryotes.  相似文献   

7.
The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3′-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ.  相似文献   

8.
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5′ overhangs, and 3′ overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.  相似文献   

9.
There are two general pathways by which multicellular eukaryotes repair double-strand DNA breaks (DSB): homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). All mammalian mutants in the NHEJ pathway demonstrate a lack of B and T lymphocytes and ionizing radiation sensitivity. Among these NHEJ mutants, the DNA-PK(cs) and Artemis mutants are the least severe, having no obvious phenotype other than the general defects described above. Ku mutants have an intermediate severity with accelerated senescence. The XRCC4 and DNA ligase IV mutants are the most severe, resulting in embryonic lethality. Here we show that the lethality of DNA ligase IV-deficiency in the mouse can be rescued when Ku86 is also absent. To explain the fact that simultaneous gene mutations in the NHEJ pathway can lead to viability when a single mutant is not viable, we propose a nuclease/ligase model. In this model, disrupted NHEJ is more severe if the Artemis:DNA-PK(cs) nuclease is present in the absence of a ligase, and Ku mutants are of intermediate severity, because the nuclease is less efficient. This model is also consistent with the order of severity in organismal phenotypes; consistent with chromosomal breakage observations reported here; and consistent with the NHEJ mutation identified in radiation sensitive human SCID patients.  相似文献   

10.
Wang Y  Lamarche BJ  Tsai MD 《Biochemistry》2007,46(17):4962-4976
In addition to linking nicked/fragmented DNA molecules back into a contiguous duplex, DNA ligases also have the capacity to influence the accuracy of DNA repair pathways via their tolerance/intolerance of nicks containing mismatched base pairs. Although human DNA ligase I (Okazaki fragment processing) and the human DNA ligase III/XRCC1 complex (general DNA repair) have been shown to be relatively intolerant of nicks containing mismatched base pairs, the human DNA ligase IV/XRCC4 complex has not been studied in this regard. Ligase IV/XRCC4 is the sole DNA ligase involved in the repair of double strand breaks (DSBs) via the non-homologous end joining (NHEJ) pathway. During the repair of DSBs generated by chemical/physical damage as well as the repair of the programmed DSB intermediates of V(D)J recombination, there are scenarios where, at least conceptually, a capacity for ligating nicks containing mismatched base pairs would appear to be advantageous. Herein we examine whether ligase IV/XRCC4 can contribute a mismatched nick ligation activity to NHEJ. Toward this end, we (i) describe an E. coli-based coexpression system that provides relatively high yields of the ligase IV/XRCC4 complex, (ii) describe a unique rate-limiting step, which has bearing on how the complex is assayed, (iii) specifically analyze how XRCC4 influences ligase IV catalysis and substrate specificity, and (iv) probe the mismatch tolerance/intolerance of DNA ligase IV/XRCC4 via quantitative in vitro kinetic analyses. Analogous to most other DNA ligases, ligase IV/XRCC4 is shown to be fairly intolerant of nicks containing mismatched base pairs. These results are discussed in light of the biological roles of NHEJ.  相似文献   

11.
Non‐homologous end joining (NHEJ) is critical for the maintenance of genetic integrity and DNA double‐strand break (DSB) repair. NHEJ is regulated by a series of interactions between core components of the pathway, including Ku heterodimer, XLF/Cernunnos, and XRCC4/DNA Ligase 4 (Lig4). However, the mechanisms by which these proteins assemble into functional protein–DNA complexes are not fully understood. Here, we show that the von Willebrand (vWA) domain of Ku80 fulfills a critical role in this process by recruiting Aprataxin‐and‐PNK‐Like Factor (APLF) into Ku‐DNA complexes. APLF, in turn, functions as a scaffold protein and promotes the recruitment and/or retention of XRCC4‐Lig4 and XLF, thereby assembling multi‐protein Ku complexes capable of efficient DNA ligation in vitro and in cells. Disruption of the interactions between APLF and either Ku80 or XRCC4‐Lig4 disrupts the assembly and activity of Ku complexes, and confers cellular hypersensitivity and reduced rates of chromosomal DSB repair in avian and human cells, respectively. Collectively, these data identify a role for the vWA domain of Ku80 and a molecular mechanism by which DNA ligase proficient complexes are assembled during NHEJ in mammalian cells, and reveal APLF to be a structural component of this critical DSB repair pathway.  相似文献   

12.
Low levels of DNA ligases III and IV sufficient for effective NHEJ   总被引:1,自引:0,他引:1  
Cells of higher eukaryotes rejoin double strand breaks (DSBs) in their DNA predominantly by a non-homologous DNA end joining (NHEJ) pathway that utilizes the products of DNA-PKcs, Ku, LIG4, XRCC4, XLF/Cernunnos, Artemis as well as DNA polymerase lambda (termed D-NHEJ). Mutants with defects in these proteins remove a large proportion of DSBs from their genome utilizing an alternative pathway of NHEJ that operates as a backup (B-NHEJ). While D-NHEJ relies exclusively on DNA ligase IV, recent work points to DNA ligase III as a component of B-NHEJ. Here, we use RNA interference (RNAi) to further investigate the activity requirements for DNA ligase III and IV in the pathways of NHEJ. We report that 70-80% knock down of LIG3 expression has no detectable effect on DSB rejoining, either in D-NHEJ proficient cells, or in cells where D-NHEJ has been chemically or genetically compromised. Surprisingly, also LIG4 knock down has no effect on repair proficient cells, but inhibits DSB rejoining in a radiosensitive cell line with a hypomorphic LIG4 mutation that severely compromises its activity. The results suggest that complete coverage for D-NHEJ or B-NHEJ is afforded by very low ligase levels and demonstrate residual end joining by DNA ligase IV in cells of patients with mutations in LIG4.  相似文献   

13.
Wang M  Wu W  Wu W  Rosidi B  Zhang L  Wang H  Iliakis G 《Nucleic acids research》2006,34(21):6170-6182
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.  相似文献   

14.
Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.  相似文献   

15.
The use of reporter systems to analyze DNA double-strand break(DSB) repairs,based on the enhanced green fluorescent protein (EGFP) and meganuclease such as I-Sce I,is usually carried out with cell lines.In this study,we developed three visual-plus quantitative assay systems for homologous recombination(HR),non-homologous end joining(NHEJ) and single-strand annealing(SSA) DSB repair pathways at the organismal level in zebrafish embryos.To initiate DNA DSB repair,we used two I-Sce I recognition sites in opposite orientation rather than the usual single site.The NHEJ,HR and SSA repair pathways were separately triggered by the injection of three corresponding I-Sce I-cut constructions,and the repair of DNA lesion caused by l-Sce I could be tracked by EGFP expression in the embryos.Apart from monitoring the intensity of green fluorescence,the repair frequencies could also be precisely measured by quantitative real-time polymerase chain reaction(qPCR).Analysis of DNA sequences at the DSB sites showed that NHEJ was predominant among these three repair pathways in zebrafish embryos.Furthermore,while HR and SSA reporter systems could be effectively decreased by the knockdown of rad51 and rad52,respectively,NHEJ could only be impaired by the knockdown of ligaseIV(lig4) when the NHEJ construct was cut by I-Sce I in vivo.More interestingly,blocking NHEJ with lig4-MO increased the frequency of HR,but decreased the frequency of SSA.Our studies demonstrate that the major mechanisms used to repair DNA DSBs are conserved from zebrafish to mammal,and zebrafish provides an excellent model for studying and manipulating DNA DSB repair at the organismal level.  相似文献   

16.
Zhu H  Shuman S 《Nucleic acids research》2007,35(11):3631-3645
Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.  相似文献   

17.
Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. To repair the broken ends, NHEJ processes noncompatible ends into a ligatable form but suppresses processing of compatible ends. It is not known how NHEJ controls polymerase and nuclease activities to act exclusively on noncompatible ends. Here, we analyzed processing independently of ligation by using a two-stage assay with extracts that recapitulated the properties of NHEJ in vivo. Processing of noncompatible ends required wortmannin-sensitive kinase activity. Since DNA-dependent protein kinase catalytic subunit (DNA-PKcs) brings the ends together before undergoing activation of its kinase, this suggests that processing occurred after synapsis of the ends. Surprisingly, all polymerase and most nuclease activity required XRCC4/Ligase IV. This suggests a mechanism for how NHEJ suppresses processing to optimize the preservation of DNA sequence.  相似文献   

18.
Non-homologous end joining (NHEJ) is one of two pathways responsible for the repair of double-strand breaks in eukaryotic cells. The mechanism involves the alignment of broken DNA ends with minimal homology, fill in of short gaps by DNA polymerase(s), and ligation by XRCC4-DNA ligase IV complex. The gap-filling polymerase has not yet been positively identified, but recent biochemical studies have implicated DNA polymerase lambda (pol lambda), a novel DNA polymerase that has been assigned to the pol X family, in this process. Here we demonstrate that purified pol lambda can efficiently catalyze gap-filling synthesis on DNA substrates mimicking NHEJ. By designing two truncated forms of pol lambda, we also show that the unique proline-rich region in pol lambda plays a role in limiting strand displacement synthesis, a feature that may help its participation in in vivo NHEJ. Moreover, pol lambda interacts with XRCC4-DNA ligase IV via its N-terminal BRCT domain and the interaction stimulates the DNA synthesis activity of pol lambda. Taken together, these data strongly support that pol lambda functions in DNA polymerization events during NHEJ.  相似文献   

19.
In Saccharomyces cerevisiae, Mre11 protein is involved in both double-strand DNA break (DSB) repair and meiotic DSB formation. Here, we report the correlation of nuclease and DNA-binding activities of Mre11 with its functions in DNA repair and meiotic DSB formation. Purified Mre11 bound to DNA efficiently and was shown to have Mn2+-dependent nuclease activities. A point mutation in the N-terminal phosphoesterase motif (Mre11D16A) resulted in the abolition of nuclease activities but had no significant effect on DNA binding. The wild-type level of nuclease activity was detected in a C-terminal truncated protein (Mre11DeltaC49), although it had reduced DNA-binding activity. Phenotypes of the corresponding mutations were also analyzed. The mre11D16A mutation conferred methyl methanesulfonate-sensitivity to mitotic cells and caused the accumulation of unprocessed meiotic DSBs. The mre11DeltaC49 mutant exhibited almost wild-type phenotypes in mitosis. However, in meiosis, no DSB formation could be detected and an aberrant chromatin configuration was observed at DSB sites in the mre11DeltaC49 mutant. These results indicate that Mre11 has two separable functional domains: the N-terminal nuclease domain required for DSB repair, and the C-terminal dsDNA-binding domain essential to its meiotic functions such as chromatin modification and DSB formation. Keywords: DNA binding/double-strand break repair/DSB formation/Mre11/nuclease  相似文献   

20.
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号