首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Varying values for the acetylcholine (ACh) concentration in the rat heart have been reported. The possibility that the method of sampling may influence prompted a comparison of heart levels of ACh obtained by two different procedures for sacrificing animals. One method was by microwave irradiation in vivo and the others being in vitro on the irradiated heart removed after decapitation. There were significant differences found in cardiac ACh concentration between the in vivo irradiated group and the decapitation groups. In decapitated animals, the cardiac ACh concentration became increasingly lower on standing. We also measured the ACh concentration of right atrium, left atrium, right ventricle and left ventricle. They were 4.62 +/- 1.57 nmol/g (mean +/- SD), 2.58 +/- 1.01, 2.76 +/- 1.00 and 2.12 +/- 0.70, respectively. We conclude the microwave irradiation in vivo is a more appropriate method for determining the cardiac ACh concentration.  相似文献   

2.
Radioimmunoreactive vasopressin was measured in plasma, neurohypophysis and hypothalamus of the rats after different procedures of killing: a) microwave irradiation; b) decapitation; c) decapitation following a stress induced by immobilization in a restrainer. Vasopressin content in the neurohypophysis and hypothalamus was much lower in microwave irradiated than in both decapitated and stressed decapitated rats. In addition, the data from microwave technique were inconsistent with a large scatter. Plasma vasopressin concentration was elevated in both the microwave irradiated and stressed decapitated rats, demonstrating that restraining of the animals induced an excessive stress. Microwave irradiation technique including the necessary manipulation of the animal proved to be less suitable than decapitation technique for the measurement of vasopressin. It is likely that vasopressin in the hypothalamus and neurohypophysis is relatively resistant against post-mortem proteolysis.  相似文献   

3.
Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH2A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation.  相似文献   

4.
用频率为2450MHz功率密度为10mW/Cm~2(WBASAR约11.4W/kg)的微波(连续波)对置于微波暗室内的昆明种雄性小鼠急性全身照射1小时后,立即按常规方法断头,取脑,制成样品,然后用放射免疫测定法测量小鼠脑内乙酰胆碱(ACh)含量及胆碱乙酰转移酶(ChAT)活性。结果表明:照射组的ACh含量为11.6±1.4pmol/mg(脑鲜重),ChAT活性为45.4±8.7pmolACh/min.mg(脑鲜重);而对照组的分别为16.0±2.1pmol/mg和61.0±13.8pmolACh/min.mg。证明微波照射后可引起动物脑内ACh水平和ChAT活性下降,提示微波辐射对中枢胆碱能系统确有不利影响。  相似文献   

5.
Despite the importance of vagal control over the ventricle, little is known regarding vagal efferent conduction and nerve terminal function in the postischemic myocardium. To elucidate postischemic changes in the cardiac vagal efferent neuronal function, we measured myocardial interstitial acetylcholine (ACh) levels by using in vivo cardiac microdialysis and examined the ACh responses to electrical stimulation of the vagi or local administration of ouabain in anesthetized cats. Sixty-minute occlusions of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion abolished electrical stimulation-induced ACh release (20.4 +/- 3.9 vs. 0.9 +/- 0.4 nmol/l; means +/- SE, P < 0.01). In different groups of animals, 60-min LAD occlusion followed by 60-min reperfusion decreased but did not completely abolish ouabain-induced release of ACh (9.2 +/- 1.8 vs. 3.9 +/- 0.7 nmol/l; P < 0.05). These results indicate that function of the vagal efferent axon was completely interrupted, whereas the local ACh release was partially suppressed in the postischemic myocardium. The postischemic disruption of vagal efferent neuronal function might exert deleterious effects on cardiac regulation.  相似文献   

6.
The agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma) ameliorate cardiovascular complications associated with diabetes mellitus. We tested the hypothesis that recovery from ailing to failing myocardium in diabetes by PPARgamma agonist is in part due to decreased matrix metalloproteinase-9 (MMP-9) activation and left ventricular (LV) tissue levels of homocysteine (Hcy). C57BL/6J mice were made diabetic (D) by feeding them a high-fat calorie diet. PPARgamma was activated by adding pioglitazone (Pi) to the diet. After 6 wk, mice were grouped into: normal calorie diet (N), D, N + Pi and D + Pi (n = 6 in each group). LV variables were measured by echocardiography, endothelial-myocyte (E-M) coupling was measured in cardiac rings, and MMP-9 activation was measured by zymography. Blood glucose levels were twofold higher in D mice compared with N mice. Pi decreased the levels of glucose in D mice to the levels in N mice. LV Hcy levels were 3.5 +/- 0.5 microM in N groups compared with 12.4 +/- 0.6 microM in D groups. Treatment with Pi normalized the LV levels of Hcy but had no effect on plasma levels of Hcy. In the D group, LV contraction was reduced compared with that of the N group and was ameliorated by treatment with Pi. LV wall thickness was reduced to 0.25 +/- 0.02 mm in the D group compared with 0.42 +/- 0.01 mm in the N group. LV diastolic diameter was 3.05 +/- 0.01 mm in the D group compared with 2.20 +/- 0.02 mm in the N group. LV systolic diameter was 1.19 +/- 0.02 mm in the D group and 0.59 +/- 0.01 mm in the N group. Pi normalized the LV variables in D mice. The responses to ACh and nitroprusside were attenuated in diabetic hearts, suggesting that there was E-M uncoupling in the D group compared with the N group, which was ameliorated by Pi. Plasma and LV levels of MMP-2 and -9 activities were higher in the D group than in the N group but normalized after Pi treatment. These results suggest that E-M uncoupling in the myocardium, in part, is due to increased MMP activities secondary to suppressing PPARgamma activity in high-fat, calorie-induced Type 2 diabetes mellitus.  相似文献   

7.
The goal of study was to evaluate DNA damage in rat's renal, liver and brain cells after in vivo exposure to radiofrequency/microwave (Rf/Mw) radiation of cellular phone frequencies range. To determine DNA damage, a single cell gel electrophoresis/comet assay was used. Wistar rats (male, 12 week old, approximate body weight 350 g) (N = 9) were exposed to the carrier frequency of 915 MHz with Global System Mobile signal modulation (GSM), power density of 2.4 W/m2, whole body average specific absorption rate SAR of 0.6 W/kg. The animals were irradiated for one hour/day, seven days/week during two weeks period. The exposure set-up was Gigahertz Transversal Electromagnetic Mode Cell (GTEM--cell). Sham irradiated controls (N = 9) were apart of the study. The body temperature was measured before and after exposure. There were no differences in temperature in between control and treated animals. Comet assay parameters such as the tail length and tail intensity were evaluated. In comparison with tail length in controls (13.5 +/- 0.7 microm), the tail was slightly elongated in brain cells of irradiated animals (14.0 +/- 0.3 microm). The tail length obtained for liver (14.5 +/- 0.3 microm) and kidney (13.9 +/- 0.5 microm) homogenates notably differs in comparison with matched sham controls (13.6 +/- 0.3 microm) and (12.9 +/- 0.9 microm). Differences in tail intensity between control and exposed animals were not significant. The results of this study suggest that, under the experimental conditions applied, repeated 915 MHz irradiation could be a cause of DNA breaks in renal and liver cells, but not affect the cell genome at the higher extent compared to the basal damage.  相似文献   

8.
Levels of acetylcholine (ACh) and choline (Ch) and turnover of ACh have been studied in whole brain and striatum of mice by mass fragmentography, employing either spinal dislocation or microwave irradiation to kill the animals. Oxotremorine (OT) was found to increase levels of ACh and Ch both in whole brain and striatum regardless of the way of killing. In whole brain turnover of ACh was decreased after OT independently of the way of killing, but in striatum a decrease was observed only if microwave irradiation was used, which is in contrast to previous findings. The discrepancy between whole brain and striatum may be explained by the preserving effect of microwave irradiation on a very fast turning-over pool of ACh in striatum.  相似文献   

9.
Effect of millimeter wave irradiation on tumor metastasis   总被引:5,自引:0,他引:5  
One of the major side effects of chemotherapy in cancer treatment is that it can enhance tumor metastasis due to suppression of natural killer (NK) cell activity. The present study was undertaken to examine whether millimeter electromagnetic waves (MMWs) irradiation (42.2 GHz) can inhibit tumor metastasis enhanced by cyclophosphamide (CPA), an anticancer drug. MMWs were produced with a Russian-made YAV-1 generator. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm(2), respectively. Tumor metastasis was evaluated in C57BL/6 mice, an experimental murine model commonly used for metastatic melanoma. The animals were divided into 5 groups, 10 animals per group. The first group was not given any treatment. The second group was irradiated on the nasal area with MMWs for 30 min. The third group served as a sham control for group 2. The fourth group was given CPA (150 mg/kg body weight, ip) before irradiation. The fifth group served as a sham control for group 4. On day 2, all animals were injected, through a tail vein, with B16F10 melanoma cells, a tumor cell line syngeneic to C57BL/6 mice. Tumor colonies in lungs were counted 2 weeks following inoculation. CPA caused a marked enhancement in tumor metastases (fivefold), which was significantly reduced when CPA-treated animals were irradiated with MMWs. Millimeter waves also increased NK cell activity suppressed by CPA, suggesting that a reduction in tumor metastasis by MMWs is mediated through activation of NK cells.  相似文献   

10.
The effects of hypoxic hypoxia on the concentration of taurine in right ventricles was studied in the hearts of male CF1 mice caged individually and maintained for 16 hr per day in a hypobaric chamber evacuated to an air pressure of 307 mm Hg. After 23 days hearts were excised and right and left ventricles were separated and lyophilized. Hematocrits in chamber animals were 77-82%, compared to 45-49% for control mice. Mean weights of right ventricles of animals from the chamber were 11.2 +/- 0.9, compared to control values of 7.0 +/- 0.4, mg dry weight. The mean dry weights of left ventricles in both groups of animals were the same. There were no significant differences in the nmoles taurine per mg day tissue in either heart chamber, with mean values +/- S.E.M. of 124.0 +/- 4.6 and 135.0 +/- 4.5 in right ventricles and 128.0 +/- 4.3 and 110.9 +/- 15.3 in left ventricles of experimental and control animals respectively. Thus, hypertrophy which results from hypoxia is not accompanied by increased concentrations of taurine in right ventricles.  相似文献   

11.
We studied nociceptive responses to subcutaneous injections of formalin and electrical stimulation of the limbs in control mice and in mice whose acupuncture points (AP) were subjected to low-intensity microwave irradiation. In the latter animals, nociceptive reactions were significantly weaker than those in the control mice. The analgesic effect depended on what AP was selected and irradiated and on the duration and timing of microwave irradiation. In different experimental series, the duration of a formalin injection-induced nociceptive behavioral reaction decreased by 23.3–59.6%. The threshold of vocalization responses to stimulation on an electrified floor increased by 25.8±28.0%. The results demonstrate that a technique of analgesia by influencing the AP with microwave irradiation of a nonthermal intensity is rather effective.  相似文献   

12.
We determined whether manganese superoxide dismutase (MnSOD)-plasmid liposome (PL) transfection of C57BL/ 6NHsd mouse bone marrow protected cells irradiated at room temperature (24 degrees C) or in the cryopreserved state. MnSOD-overexpressing hematopoietic progenitor 2C6 cells were radioresistant compared to the parent 32D cl 3 cells when irradiated frozen or at 24 degrees C. Fresh whole marrow from mice injected intravenously with MnSOD-PL prior to explant as well as explanted marrow single cell suspensions transfected in vitro were irradiated at 24 degrees C or -80 degrees C. In vivo or in vitro transfection of marrow with MnSOD-PL produced significant radiation protection of irradiated marrow progenitor cells compared to controls at 24 degrees C or -80 degrees C. (in vivo transfection D(0) 2.19 +/- 0.21 at 24 degrees C, D(0) 2.10 +/- 0.07 at -80 degrees C compared to control D(0) 1.56 +/- 0.06 or 1.66 +/- 0.04, P = 0.047 and 0.017 respectively; in vitro transfection D(0) 2.35 +/- 0.11 at 24 degrees C, D(0) 3.42 +/- 0.13 at -80 degrees C compared to D(0) 1.81 +/- 0.01 or 2.53 +/- 0.05, P = 0.0087 and 0.0026, respectively). Thus the MnSOD transgene product protects frozen marrow cells as well as marrow cells irradiated at 24 degrees C.  相似文献   

13.
The purpose of the present research was to determine the effect of in utero ethanol exposure on cardiac muscle development. Pregnant albino mice (Swiss strain) at 8 days of gestation were divided into three groups: a normal group fed Purina lab chow for rodents and water ad libitum; an ethanol group fed the liquid diet ENSURE with 20% of the calories derived from ethanol (12.6 +/- 1.2 gm/kg body weight per day); and an isocaloric group pairfed ENSURE with 20% of the calories derived from sucrose. These diets were continued until birth, at which time the litter size, crown to rump length, and weight were recorded. Randomly selected neonatal pups from each litter were decapitated and their hearts immediately processed for transmission electron microscopy. Litter size, crown to rump length, and body weight of the ethanol-treated mice at birth were significantly less than normal but not less than pairfed controls. Ultrastructural evaluation of cardiac muscle from mice treated in utero with ethanol in comparison to that from both normal and pair-fed control animals revealed various degrees of morphological alterations. The most pronounced alterations were in mitochondrial structure and included an increase in mitochondrial volume per cytoplasmic volume and a marked decrease in the amount of inner mitochondrial membrane. Myofibrillar abnormalities were also evident in the ethanol group but not in either control group. These abnormalities included a decrease in the myofibril volume per cytoplasmic volume and a disruption in myofibril organization particularly the Z-bands. The ultrastructural alterations in the cardiac muscle from the ethanol treated group were not a result of malnutrition or dehydration as the pairfed group did not exhibit these changes. It is apparent from this study that exposure of mice in utero to ethanol can cause ultrastructural abnormalities in cardiac muscle cells. Whether these changes result in heart pathophysiology and persist to adulthood are not known.  相似文献   

14.
Hyperphosphorylation of myosin regulatory light chain (RLC) in cardiac muscle is proposed to cause compensatory hypertrophy. We therefore investigated potential mechanisms in genetically modified mice. Transgenic (TG) mice were generated to overexpress Ca2+/calmodulin-dependent myosin light chain kinase specifically in cardiomyocytes. Phosphorylation of sarcomeric cardiac RLC and cytoplasmic nonmuscle RLC increased markedly in hearts from TG mice compared with hearts from wild-type (WT) mice. Quantitative measures of RLC phosphorylation revealed no spatial gradients. No significant hypertrophy or structural abnormalities were observed up to 6 months of age in hearts of TG mice compared with WT animals. Hearts and cardiomyocytes from WT animals subjected to voluntary running exercise and isoproterenol treatment showed hypertrophic cardiac responses, but the responses for TG mice were attenuated. Additional biochemical measurements indicated that overexpression of the Ca2+/calmodulin-binding kinase did not perturb other Ca2+/calmodulin-dependent processes involving Ca2+/calmodulin-dependent protein kinase II or the protein phosphatase calcineurin. Thus, increased myosin RLC phosphorylation per se does not cause cardiac hypertrophy and probably inhibits physiological and pathophysiological hypertrophy by contributing to enhanced contractile performance and efficiency.  相似文献   

15.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on ATP levels in different areas of mouse brain were studied after rapid fixation of cerebral tissue in situ by microwave irradiation. ATP levels in the striatum, ventral mesencephalon, and cerebellum of untreated C57BL/6 mice killed by microwave irradiation were 2-3 times greater than values measured in the brains of animals killed by cervical dislocation. In microwaved mice, administration of MPTP (40 mg/kg s.c.) caused a 10-20% decrease in ATP concentrations as compared to control animals injected with saline. This decrease was relatively rapid and selective because it occurred in both the striatum and ventral mesencephalon, but not in the cerebellar and frontal cortex, at 30, 60, 120, and 240 min after MPTP exposure. Furthermore, ATP loss in the striatum was prevented by mazindol, a catecholamine uptake blocker, indicating a rather selective effect of MPTP on the ATP content of dopaminergic terminals. Results of this study are consistent with mitochondrial damage in the MPTP model of parkinsonism and provide the first direct experimental evidence in vivo that a decrease in ATP may play a role in MPTP-induced neurotoxicity.  相似文献   

16.
To determine critical role of cyclooxygenase-2 (COX-2) for development of viral myocarditis, a mouse model of encephalomyocarditis virus-induced myocarditis was used. The virus was intraperitoneally given to COX-2 gene-deficient heterozygote mice (COX-2+/-) and wild-type mice (WT). We examined differences in heart weights, cardiac histological scores, numbers of infiltrating or apoptotic cells in myocardium, cardiac expression levels of COX-2, tumor necrosis factor-alpha (TNF-alpha), and adiponectin mRNA, immunoreactivity of COX-2, TNF-alpha, and adiponectin in myocytes, cardiac concentrations of TNF-alpha and adiponectin, prostaglandin E2 (PGE2) levels in hearts, and viral titers in tissues between COX-2+/- and WT. We observed significantly decreased expression of COX-2 mRNA and reactivity in hearts from COX-2+/- on day 8 after viral inoculation as compared with that from WT, together with elevated cardiac weights and severe inflammatory myocardial damage in COX-2+/-. Cardiac expression of TNF-alpha mRNA, reactivity, and protein on day 8 was significantly higher in COX-2+/- than in WT, together with reciprocal expression of adiponectin mRNA, reactivity, and protein in hearts. Significantly reduced cardiac PGE2 levels on day 8 were found in COX-2+/- compared with those in WT. There was no difference in local viral titers between both groups on day 4. Infected WT treated with a selective COX-2 inhibitor, NS-398, also showed the augmented myocardial damage on day 8. These results suggest that inhibition of COX-2 may enhance myocardial damage through reciprocal cardiac expression of TNF-alpha and adiponectin in a mouse model of viral myocarditis.  相似文献   

17.
Mast cells are found in the heart and contribute to reperfusion injury following myocardial ischemia. Since the activation of A2A adenosine receptors (A2AARs) inhibits reperfusion injury, we hypothesized that ATL146e (a selective A2AAR agonist) might protect hearts in part by reducing cardiac mast cell degranulation. Hearts were isolated from five groups of congenic mice: A2AAR+/+ mice, A2AAR(-/-) mice, mast cell-deficient (Kit(W-sh/W-sh)) mice, and chimeric mice prepared by transplanting bone marrow from A2AAR(-/-) or A2AAR+/+ mice to radiation-ablated A2AAR+/+ mice. Six weeks after bone marrow transplantation, cardiac mast cells were repopulated with >90% donor cells. In isolated, perfused hearts subjected to ischemia-reperfusion injury, ATL146e or CGS-21680 (100 nmol/l) decreased infarct size (IS; percent area at risk) from 38 +/- 2% to 24 +/- 2% and 22 +/- 2% in ATL146e- and CGS-21680-treated hearts, respectively (P < 0.05) and significantly reduced mast cell degranulation, measured as tryptase release into reperfusion buffer. These changes were absent in A2AAR(-/-) hearts and in hearts from chimeric mice with A2AAR(-/-) bone marrow. Vehicle-treated Kit(W-sh/W-sh) mice had lower IS (11 +/- 3%) than WT mice, and ATL146e had no significant protective effect (16 +/- 3%). These data suggest that in ex vivo, buffer-perfused hearts, mast cell degranulation contributes to ischemia-reperfusion injury. In addition, our data suggest that A2AAR activation is cardioprotective in the isolated heart, at least in part by attenuating resident mast cell degranulation.  相似文献   

18.
Human hearts with end-stage failure and fibrosis have macrophage accumulation and elevated plasminogen activator activity. However, the mechanisms that link macrophage accumulation and plasminogen activator activity with cardiac fibrosis are unclear. We previously reported that mice with macrophage-targeted overexpression of urokinase plasminogen activator (SR-uPA+/o mice) develop cardiac macrophage accumulation by 5 weeks of age and cardiac fibrosis by 15 weeks. We used SR-uPA+/o mice to investigate mechanisms through which macrophage-expressed uPA causes cardiac macrophage accumulation and fibrosis. We hypothesized that: 1) macrophage accumulation and cardiac fibrosis in SR-uPA+/o mice are dependent on localization of uPA by the uPA receptor (uPAR); 2) activation of plasminogen by uPA and subsequent activation of transforming growth factor-beta1 (TGF-beta1) and matrix metalloproteinase (MMP)-2 and -9 by plasmin are critical pathways through which uPA-expressing macrophages accumulate in the heart and cause fibrosis; and 3) uPA-induced cardiac fibrosis can be attenuated by treatment with verapamil. To test these hypotheses, we bred the SR-uPA+/o transgene into mice deficient in either uPAR or plasminogen and measured cardiac macrophage accumulation and fibrosis. We also measured cardiac TGF-beta1 protein (total and active), Smad2 phosphorylation, and MMP activity after the onset of macrophage accumulation but before the onset of cardiac fibrosis. Finally, we treated mice with verapamil. Our studies revealed that plasminogen is necessary for uPA-induced cardiac fibrosis and macrophage accumulation but uPAR is not. We did not detect plasmin-mediated activation of TGF-beta1, MMP-2, or MMP-9 in hearts of SR-uPA+/o mice. However, verapamil treatment significantly attenuated both cardiac fibrosis and macrophage accumulation.  相似文献   

19.
The effect of 2,450-MHz CW microwaves on natural killer (NK) cell activity and lymphocyte responsiveness to mitogen stimulation was studied in mice. Groups of mice were irradiated at power densities of 5, 15, or 30 mW/cm2 (SAR = 3.5, 10.5, and 21 W/kg respectively) for 1.5 h on 2 or 9 consecutive days. NK cell activity was determined using an in vitro 51Cr release cytotoxicity assay and an in vivo tumor-cell clearance assay. No consistent change was observed in the mitogen response of spleen cells from sham compared with irradiated mice. A significant suppression of NK cell activity measured in vitro was observed for mice irradiated at 30 mW/cm2, but not at 15 or 5 mW/cm2. A significant suppression of NK cell activity, as determined using the in vivo tumor clearance assay, was also observed at 30 mW/cm2. NK cell activity, as determined using the in vitro assay, returned to normal within 24 h following the last irradiation. Treatment of mice with hydrocortisone caused suppression of NK cell activity measured in vitro and in vivo. Paradoxically, peritoneal macrophage phagocytosis was enhanced following irradiation at 30 mW/cm2, the power density at which NK activity was suppressed. The possible role that microwave heating plays in producing these effects is discussed.  相似文献   

20.
Isolated perfused hearts from type 2 diabetic (db/db) mice show impaired ventricular function, as well as altered cardiac metabolism. Assessment of the relationship between myocardial oxygen consumption (MVO(2)) and ventricular pressure-volume area (PVA) has also demonstrated reduced cardiac efficiency in db/db hearts. We hypothesized that lowering the plasma fatty acid supply and subsequent normalization of altered cardiac metabolism by chronic treatment with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist will improve cardiac efficiency in db/db hearts. Rosiglitazone (23 mg/kg body weight/day) was administered as a food admixture to db/db mice for five weeks. Ventricular function and PVA were assessed using a miniaturized (1.4 Fr) pressure-volume catheter; MVO(2) was measured using a fibre-optic oxygen sensor. Chronic rosiglitazone treatment of db/db mice normalized plasma glucose and lipid concentrations, restored rates of cardiac glucose and fatty acid oxidation, and improved cardiac efficiency. The improved cardiac efficiency was due to a significant decrease in unloaded MVO(2), while contractile efficiency was unchanged. Rosiglitazone treatment also improved functional recovery after low-flow ischemia. In conclusion, the present study demonstrates that in vivo PPARgamma-treatment restores cardiac efficiency and improves ventricular function in perfused hearts from type 2 diabetic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号