首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eosin Y inhibitory effect on the activity of smooth muscle plasma membrane Ca(2+)-transporting ATPase was studied: effect of this inhibitor on the maximal initial rate of ATP-hydrolase reaction, catalyzed by Ca2+, Mg(2+)-ATPase, on the affinity of enzyme for the reaction reagents (Ca2+, Mg2+, ATP). Dependence of eosin Y inhibitory effect on some physicochemical factors of incubation medium was studied too. It was determined that eosin Y inhibited reversibly and with high specificity purified Ca2+, Mg(2+)-ATPase solubilized from myometrial cell plasma membrane (Ki--0.8 microM), decreased the turnover rate of this enzyme determined both by Mg2+, ATP and Ca2+. This inhibitor had no effect on the enzyme affinity for Ca2+, increased affinity for Mg2+ and decreased affinity for ATP. It was determined that inhibition of Ca2+, Mg(2+)-ATPase by eosin Y depended on pH and dielectric permeability of the incubation medium: increasing of pH from 6.5 to 8.0 reduced the apparent Ki, decreasing of dielectric permeability from 74.07 to 71.19 increased the apparent Ki.  相似文献   

2.
With the aim to elucidate mechanism of eosin Y inhibitory effect on the Ca(2+)-transporting ATPase activity of myometrial cell plasma membrane effect of this inhibitor on the maximal initial rate of ATP hydrolysis reaction, catalyzed by Ca2+, Mg(2+)-ATPase, and on the enzyme affinity for Ca2+ was studied. It was established that eosin Y decreased the rate of Ca2+, Mg(2+)-ATPase catalitic turnover determined by Ca2+ and had no effect on enzyme affinity for this cation.  相似文献   

3.
Eosin Y was studied with the aim to elucidate the mechanism of its inhibitory effect on the activity of Ca(2+)-transporting ATPase of myometrium cell plasma membrane. The inhibitor was studied for its effect on the maximal rate of the ATP-hydrolase reaction catalyzed by Ca2+, Mg(2+)-ATPase, on the enzyme affinity for the substrate and a possibility of enzyme activity protection under the inhibitor effect by the main reagents of ATP-hydrolase reaction. It was established that eosin Y decreased the turnover rate of this enzyme and his affinity for ATP. Preincubation of ATPase with ATP (or ATP plus MgCl2) had no effect on the extent of enzyme inhibition by eosin Y. This result proves that eosin Y and ATP do not compete for the site of binding on the enzyme.  相似文献   

4.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

5.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

6.
A Ca2(+)-ATPase with a high affinity for free Ca2+ (apparent Km of 0.13 microM) was found and characterized in membrane fractions from porcine aortic and coronary artery smooth muscles in comparison with the plasma membrane Ca2(+)-pump ATPase purified from porcine aorta by calmodulin affinity chromatography. The activity of the high-affinity Ca2(+)-ATPase became enriched in a plasma membrane-enriched fraction, suggesting its localization in the plasma membrane. The enzyme was fully active in the absence of exogenously added Mg2+, but required a minute amount of Mg2+ for its activity as evidenced by the findings that it was fully active in the presence of 0.1 microM free Mg2+ but lost the activity in a reaction mixture containing trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid as a divalent cation chelator which has, unlike EGTA, high affinities for both Ca2+ and Mg2+. It was able to utilize a variety of nucleoside di- and triphosphates as substrates, such as ADP, GDP, ATP, GTP, CTP, and UTP, showing a broad substrate specificity. The activity of the enzyme was not modified by calmodulin (5, 10 micrograms/ml). Trifluoperazine, a calmodulin antagonist, had a partial inhibitory effect on the activity at 30 to 240 microM, but this inhibition could not be reproduced by a more specific calmodulin antagonist, W-7, indicating that this inhibition by trifluoperazine was not specific. Furthermore, the high-affinity Ca2(+)-ATPase activity was not modified either by low concentrations (0.5-9 microM) of vanadate or by 1-100 microM p-chloromercuribenzoic acid. Cyclic GMP, nitroglycerin, and nicorandil did not have any effect on the enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Effect of calix[4]arenes C-97, C-99, C-107, functionalized by fragments of alpha-hydroxy-phosphonic, alpha-aminophosphonic- and methylene-bisphosphonic acid on enzymatic activity of oubaine-sensitive Na+, K+-ATPase and oubaine-resistant basal Mg2+- ATPase (specific activity - 10.6 +/- 0.9 and 18.1 +/- 1.2 micromol Pi/h per 1 mg of protein, respectively; n = 7) was studied in experiments made on the suspension of myometrium cell plasma membranes treated by 0.1% solution of digitonin. It was found that calixarene-phosphonic acids in concentration of 100 microM inhibited enzymatic activity of Na+, K+-ATPase by 86-98% and did not practically affect activity of Mg2+-ATPase. These calixarenes were more efficient than oubaine in suppressing enzymatic activity of the sodium pump: in case of the effect of calixerenes the value of the appearence constant of inhibition I0.5 was < 0.1 microM. Calixarene-methylene-bisphosphonic acid (calixarene C-97; I0.5 =33 +/- 4 microM (n = 6) takes the most efficient inhibitory effect on Na+,K+-ATPase activity among the studied calixarenes. A phenomenon of negative cooperation: the Hill coefficient value etaH =0.1-0.5<1 is characteristic of both the inhibiting effect of calixarenes and oubaine. Reguliarities of calixarenes C-97 effect on enzymatic activity of Na+,K+-ATPase were studied. As it appeared its inhibiting effect cannot be caused by trivial factors - potentially possible binding of Mg ions by it and (or) this substance effect on Mg2+ interaction with ATP4- in the incubation medium. Calixerene C-97 does not also decrease the enzyme affinity for Mg ions or ATP. However this calixerenes decreases the affinity of Na+,K+-ATPase for Na ions (the value of activation constant K(Na+)) from 50 +/- 4 (control) to 76 +/- 6 microM in the control and under the effect of calixerene, respectively). A conclusion is made that calixerene C-97 is highly-efficient (with respect to oubaine) and selective (with respect to lack of its effect on basal Mg2+-ATPase) inhibitor of Na+,K+-ATPase of plasma membrane. In the practical aspect it may be used in concentration of 1-10 microM in biochemical membranology when testing and studying kinetic and catalytic properties of the sodium pump in case of such experimental model, as the plasma membrane fraction.  相似文献   

8.
The rate of ATP hydrolysis by the Neurospora plasma membrane [H+]-ATPase has been measured over a wide range of Mg2+ and ATP concentrations, and on the basis of the results, a kinetic model for the enzyme has been developed. The model includes the following three binding sites: 1) a catalytic site at which MgATP serves as the true substrate, with free ATP as a weak competitive inhibitor; 2) a high affinity site for free Mg2+, which serves to activate the enzyme with an apparent K1/2 (termed KMgA) of about 15 microM; and 3) a separate low affinity site at which Mg2+ causes mixed type inhibition, lowering the Vmax while raising the KS for MgATP at the catalytic site. The Ki for Mg2+ at the low affinity site (termed KMgI) is about 3.5 mM. The model satisfactorily explains the activity of the enzyme as Mg2+ and ATP are varied, separately and together, over a wide range. It can also account for the previously reported effects of Mg2+ and ATP on the inhibition of the Neurospora [H+]-ATPase by N-ethylmaleimide (Brooker, R. J., and Slayman, C. W. (1982) J. Biol. Chem. 257, 12051-12055; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 8827-8832).  相似文献   

9.
Two Ca2+-stimulated ATPase activities have been identified in the plasma membrane of rat parotid: (a) a (Ca2+ + Mg2+)-ATPase with high affinity for free Ca2+ (apparent Km = 208 nM, Vmax = 188 nmol/min per mg) and requiring micromolar concentration of Mg2+ and (b) a (Ca2+ or Mg2+)-ATPase with relatively low affinity for free Ca2+ (K0.5 = 23 microM) or free Mg2+ (K0.5 = 26 microM). The low-affinity (Ca2+ or Mg2+)-ATPase can be maximally stimulated by Ca2+ alone or Mg2+ alone. The high-affinity (Ca2+ + Mg2+)-ATPase exhibits sigmoidal kinetics with respect to ATP concentration with K0.5 = 0.4 mM and a Hill coefficient of 1.91. It displays low substrate specificity with respect to nucleotide triphosphates. Although trifluoperazine inhibits the activity of the high affinity (Ca2+ + Mg2+)-ATPase only slightly, it inhibits the activity of the low-affinity (Ca2+ or Mg2+)-ATPase quite potently with 22 microM trifluoperazine inhibiting the enzymic activity by 50%. Vanadate, inositol 1,4,5-trisphosphate, phosphatidylinositol 4,5-bisphosphate, Na+,K+ and ouabain had no effect on the activities of both ATPases. Calmodulin added to the plasma membranes does not stimulate the activities of both ATPases. The properties of the high-affinity (Ca2+ + Mg2+)-ATPase are distinctly different from those of the previously reported Ca2+-pump activity of the rat parotid plasma membrane.  相似文献   

10.
A unique cytoplast preparation from Ehrlich ascites tumor cells (G. V. Henius, P. C. Laris, and J. D. Woodburn (1979) Exp. Cell. Res. 121, 337-345), highly enriched in plasma membranes, was employed to characterize the high-affinity plasma membrane calcium-extrusion pump and its associated adenosine triphosphatase (ATPase). An ATP-dependent calcium-transport system which had a high affinity for free calcium (K0.5 = 0.040 +/- 0.005 microM) was identified. Two different calcium-stimulated ATPase activities were detected. One had a low (K0.5 = 136 +/- 10 microM) and the other a high (K0.5 = 0.103 +/- 0.077 microM) affinity for free calcium. The high-affinity enzyme appeared to represent the ubiquitous high-affinity plasma membrane (Ca2+ + Mg2+)-ATPase (calcium-stimulated, magnesium-dependent ATPase) seen in normal cells. Both calcium transport and the (Ca2+ + Mg2+)-ATPase were significantly stimulated by the calcium-dependent regulatory protein calmodulin, especially when endogenous activator was removed by treatment with the calcium chelator ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid. Other similarities between calcium transport and the (Ca2+ + Mg2+)-ATPase included an insensitivity to ouabain (0.5 mM), lack of activation by potassium (20 mM), and a requirement for magnesium. These similar properties suggested that the (Ca2+ + Mg2+)-ATPase represents the enzymatic basis of the high-affinity calcium pump. The calcium pump/enzyme system was inhibited by orthovanadate at comparatively high concentrations (calcium transport: K0.5 congruent to 100 microM; (Ca2+ + Mg2+)-ATPase: K0.5 greater than 100 microM). Upon Hill analysis, the tumor cell (Ca2+ + Mg2+)-ATPase failed to exhibit cooperative activation by calcium which is characteristic of the analogous enzyme in the plasma membrane of normal cells.  相似文献   

11.
The catalytic properties of myometrium sarcolemmal Ca2+, Mg2(+)-ATPase purified from plasma membrane solubilizate by affinity chromatography on calmodulin-Sepharose were investigated. The enzyme isolated in the presence of azolectin revealed a calmodulin-independent affinity for Ca2+ (Km = 0.17 microM). Purified Ca2+, Mg2(+)-ATPase displayed a strict substrate specificity, was inhibited by low concentrations of o-vanadate and was insensitive to oxytocin and prostaglandins E2 and F2 alpha. The enzyme activity was maximal at 45 degrees C, pH 7.5-8.0, and at Mg-ATP and Ca2+ concentrations of 1.5-2.5 mM and 5-20 microM, respectively.  相似文献   

12.
The effect of the reversible inhibitor of membrane-bound Ca2+ -transporting system in smooth muscle--eosin Y--on apparent kinetic parameters that characterize the sensitivity to Mg2+ of myometrium actomyosine ATPase reaction was investigated. It is shown that eosin Y decreases an affinity of actomyosin for Mg2+ and does not influence the number of turns of the smooth muscle actomyosin ATPase activity that was defined by Mg2+. This suggests possible competition of eosin Y with Mg2+ for the active center of actomyosin ATPase. However, the negatively charged inhibitor cannot be adsorbed on Mg2+-binding site of the active center because of essential differences in size, form and charge between eosin Y and Mg2+. Most likely, eosin Y acts on uterus smooth muscle actomyosin as an allosteric inhibitor. Consequently, the mechanism of eosin Y action on ATPase activity of myometrium contractile proteins is different from the mechanism of its influence on ATP-hydrolase enzyme systems of plasmatic membranes.  相似文献   

13.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

14.
Accumulation of gold in cells of Bacillus sp. B4253 can be directly or indirectly connected with activity of bacteria plasma membrane basal Mg2+-ATPase. Therefore this work deals with a comparative analysis of kinetic properties of plasma membrane basal azide-resistant Mg2+-dependent ATP-hydrolase activity of B. sp. B4253 and B. sp. B4851 capable to gold accumulation and not capable to this process, accordingly. It is shown, that by a number of kinetic parameters - specific fermentative activity, initial speed of reaction of hydrolysis ATP (V0), Mixaelis constant (Km), the maximal initial speed by Mg2+ (V(Mg)) and by ATP (V(ATP)), optimum concentration of ATP ([ATP]opt), pHmax, sensitivity to action of the thapsigargine and eosine Y - bacteria membranes basal Mg2+-ATPase activity accumulating gold, and the bacteria not capable to this process, are identical. But by some parameters they differ: Mg2+-ATPase activity of membranes of the bacteria which do not accumulate gold, has three times greater affinity for Mg ions and smaller value [Mg]opt. The inhibition effect of ionic gold (10(-4)-3x10(-4) M) is shown on azide-sensitive (H+-ATPase) and azide-resistant (Mg2+-ATPase) components Mg2+-dependent ATP-hydrolase activity in fraction of plasma membranes of microorganisms Bacillus accumulating gold, and not capable to this process. Colloid gold (0.0002-4 microg/ml) stimulates activity of H+-ATPase and Mg2+-ATPase in a membrane of the bacteria accumulating gold 1.5-2 times, and does not influence activity of ATPases of a membrane of the bacteria which do. not accumulate gold.  相似文献   

15.
With the aim of comparative estimation of efficacy of well-known inhibitors of energy-dependent Ca(2+)-transporting systems their effects were investigated on the activity of purified Ca2+, Mg(2+)-ATPase of the myometrium cell plasma membranes. From the approved inhibitors (eosin Y, o-vanadate, thapsigargin, cyclopiazonic acid, ruthenium red, sodium azide) only eosin Y and o-vanadate are potent inhibitors of myometrium sarcolemma Ca(2+)-pump: the values of Ki equal 0.8 and 4.7 microM, respectively. Thapsigargin and cyclopiazonic acid as well as ruthenium red in concentrations inhibiting, respectively, endo(sarco)plasmic reticulum Ca(2+)-pump and energy-dependent Ca(2+)-transport in mitochondria had no effect on the Ca2+, Mg(2+)-ATPase of the uterus smooth muscle cell plasma membrane. Sodium azide (10 mM) blocking completely Ca(2+)-transport in mitochondria inhibited activity of the plasma membrane Ca(2+)-transporting ATPase by 14%.  相似文献   

16.
Effect of Cl and HCO3- ions on the Mg2+ -ATPase activity of the plasma membrane of bream brain was investigated. Cl- (5 or 10 mM) and HCO3- (1-5 mM) individually have low effect on the "basal" Mg2+ -ATPase. Simultaneous presence of Cl- and HCO3- in the incubation medium significantly increased the enzyme activity. Maximum effect of anions on the enzyme is observed in the presence of Cl- (approximately 7 mM) and HCO3- (approximately 3 mM). Br- can replace Cl- under joint effect with HCO3-, while I- has half maximum activity compared with Cl-. Bicuculline (7 microM) inhibits completely the joint effect of Cl- and HCO3- on the enzyme, while it has no effect on the "basal" Mg2+ -ATPase activity. SH-reagents (5, 5-dithiobis-2-nitrobenzoic acid, N-ethylmaleimide), oligomycine and orthovanadate inhibited the Cl-, HCO3- -activated Mg2+ -ATPase. The obtained results demonstrated that Mg2+ -ATPase of the bream brain sensitive to GABAergic ligands at a fixed concentrations of Cl- and HCO3- ions in the incubation medium is Cl-, HCO3- -activated by Mg2+ -ATPase, whose activity meets a number of requirements to the system which may be involved by GABAA receptors in the Cl-/HCO3- -exchange processes.  相似文献   

17.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

18.
A high degree of ATP hydrolytic activity present in purified rat pancreatic acinar cells was localized to plasma membranes. This activity was stimulated almost equally by Mg2+ or Ca2+. Kinetic analysis revealed that the enzyme had a higher affinity for Ca2+ (Kd = 1.73 microM) than Mg2+ (Kd = 2.98 microM) but a similar maximal rate of activity. A comparison of substrate requirements revealed very similar profiles for the Mg2+- and Ca2+-stimulated activities. Combinations of saturating concentrations of Mg2+ or Ca2+ produced the same degree of maximal activity. Investigation of the partial reactions of the ATPase activity revealed two phosphoprotein intermediates (Mr = 115,000 and 130,000) in the presence of Ca2+ and Mg2+. A significant stimulation of the Ca2+-ATPase activity by calmodulin was observed (Kd = 0.7 microM). Calmodulin increased the Ca2+-sensitivity of this enzyme system; Mg2+ appeared to be required for this effect. The Ca2+-ATPase activity was also stimulated by acidic phospholipids. Using an 125I-labeled calmodulin gel overlay technique, calmodulin was shown to bind in a Ca2+-dependent fashion to 133,000- and 230,000-dalton proteins present in the plasma membrane-enriched fraction. Under conditions that favor Ca2+-dependent kinase activity, calmodulin enhanced the phosphorylation of a 30,000- and 19,000-dalton protein. The major ATP hydrolytic activity in pancreatic acinar plasma membranes was present as an ectoenzyme.  相似文献   

19.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

20.
The plasma membrane of Saccharomyces cerevisiae has a Mg2+-dependent ATPase which is distinct from the mitochondrial Mg2+-ATPase and at the pH optimum of 5.5 has a Km for ATP of 1.7 mM and a Vmax of 0.42 mumol of ATP hydrolyzed/mg/min. At least three protein components of the crude membrane (Mr = 210,000, 160,000 and 115,000) are labeled with [gamma"32P]ATP at pH 5.5. These phosphoproteins form rapidly in the presence of Mg2+, rapidly turn over the bound phosphate when unlabeled ATP is added, and dephosphorylate after incubation in the presence of hydroxylamine. Vanadate, an inhibitor of the Mg2+-ATPase activity, blocks the phosphorylation of the 210,000- and 115,000-dalton proteins. At pH 7.0, only the 210,000- and 160,000-dalton proteins are phosphorylated. While these three phosphorylated intermediates have not been unambiguously identified as components of the Mg2+-ATPase, the finding of such phosphorylated components in association with that activity implies that this enzyme differs in mechanism from the mitochondrial proton pump and that it is similar in mechanism to the metal ion pumps ((Na+-K+)-ATPase and Ca2+-ATPase) of the mammalian plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号