首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-12 plays a central role in both innate and acquired immunity and has been demonstrated to potentiate the protective immunity in several experimental vaccines. However, in this study, we show that IL-12 can be detrimental to the immune responses elicited by a plasmid DNA vaccine. Coadministration of the IL-12-expressing plasmid (pIL-12) significantly suppressed the protective immunity elicited by a plasmid DNA vaccine (pE) encoding the envelope protein of Japanese encephalitis virus. This suppressive effect was associated with marked reduction of specific T cell proliferation and Ab responses. A single dose of pIL-12 treatment with plasmid pE in initial priming resulted in significant immune suppression to subsequent pE booster immunization. The pIL-12-mediated immune suppression was dose dependent and evident only when the IL-12 gene was injected either before or coincident with the pE DNA vaccine. Finally, using IFN-gamma gene-disrupted mice, we showed that the suppressive activity of the IL-12 plasmid was dependent upon endogenous production of IFN-gamma. These results demonstrate that coexpression of the IL-12 gene can sometimes produce untoward effects to immune responses, and thus its application as a vaccine adjuvant should be carefully evaluated.  相似文献   

2.
Host control of Mycobacterium tuberculosis is dependent on the activation of CD4+ T cells secreting IFN-gamma and their recruitment to the site of infection. The development of more efficient vaccines against tuberculosis requires detailed understanding of the induction and maintenance of T cell immunity. Cytokines important for the development of cell-mediated immunity include IL-12 and IL-23, which share the p40 subunit and the IL-12Rbeta1 signaling chain. To explore the differential effect of IL-12 and IL-23 during M. tuberculosis infection, we used plasmids expressing IL-23 (p2AIL-23) or IL-12 (p2AIL-12) alone in dendritic cells or macrophages from IL-12p40(-/-) mice. In the absence of the IL-12/IL-23 axis, immunization with a DNA vaccine expressing the M. tuberculosis Ag85B induced a limited Ag-specific T cell response and no control of M. tuberculosis infection. Co-delivery of p2AIL-23 or p2AIL-12 with DNA85B induced strong proliferative and IFN-gamma-secreting T cell responses equivalent to those observed in wild-type mice immunized with DNA85B. This response resulted in partial protection against aerosol M. tuberculosis; however, the protective effect was less than in wild-type mice owing to the requirement for IL-12 or IL-23 for the optimal expansion of IFN-gamma-secreting T cells. Interestingly, bacillus Calmette-Guérin immune T cells generated in the absence of IL-12 or IL-23 were deficient in IFN-gamma production, but exhibited a robust IL-17 secretion associated with a degree of protection against pulmonary infection. Therefore, exogenous IL-23 can complement IL-12 deficiency for the initial expansion of Ag-specific T cells and is not essential for the development of potentially protective IL-17-secreting T cells.  相似文献   

3.
BACKGROUND: The cell mediated immune profiles following immunization with a recombinant DNA vaccine was assessed in the simian-human immunodeficiency virus (SHIV) and Macaque model. Earlier work demonstrated increased numbers of antigen specific CD8 and CD4 effector cells able to secrete IFN-gamma. METHOD: The vaccine strategy included co-immunization of a DNA based vaccine alone or in combination with a macaque IL-12 expressing plasmid (pmacIL12). Antigen activated lymphocytes were studied for activation of a set of immunological molecules. RESULTS: The current study demonstrates lymphocytes isolated and activated from the group that was immunized with DNA and pmacIL12 had a higher level of IFN-gamma producing cells. We also observed a different immunological profile when comparing the cells isolated from macaques immunized with DNA as compared to those animals that also received pmacIL12. CONCLUSION: The observed immune profiles are reflective of the co-delivery of pmacIL12 and demonstrates that IL-12 can increase the magnitude and polyfunctionality of the cellular immune response.  相似文献   

4.
An effective candidate subunit vaccine consisting of the gp 70/85 of feline leukemia virus (FeLV) was prepared by using the immunostimulating complex (iscom) method for the presentation of membrane proteins of enveloped viruses. Two 32-wk-old specific pathogen-free (SPF) cats were immunized with a FeLV iscom vaccine prepared from the supernatant fluid of the FL74 tumor cell line without adjuvant. Both cats developed FeLV serum antibodies, as measured in an enzyme-linked immunosorbent assay (ELISA) and in a virus neutralization test. A proportion of the antibodies were directed to an epitope located on gp70/85, which was shown in competition ELISA with a peroxidase-labeled virus-neutralizing monoclonal antibody to be shared by all three subtypes of FeLV. The protective effect of FeLV iscom was studied by vaccinating six 8-wk-old SPF cats with iscom prepared from cell culture supernatant of another tumor cell line F422, followed by oronasal challenge with 10(6) ffu FeLV-A (strain Glasgow-1). Six unvaccinated cats were also challenged with the same dose of FeLV. The vaccinated cats developed FeLV serum antibodies, some of which were directed to the shared epitope on gp70/85. At 10 wk after challenge, none was viremic, whereas three of the control cats had developed FeLV viremia. The potential of FeLV iscom as a vaccine against FeLV-associated disease in cats, and of iscom vaccines for protection against mammalian retrovirus infections, is discussed.  相似文献   

5.
Protective immunity against Mycobacterium tuberculosis infection requires the induction and maintenance of mycobacteria-specific, IFN-gamma-secreting CD4+ and CD8+ T lymphocytes. The development of Th1-like T cells is promoted by the early secretion and synergistic action of interleukin (IL)-12 and IL-18. This study compares the effects of plasmid-encoded IL-12 and IL-18 on the immunogenicity and protective efficacy of a DNA vaccine expressing the M. tuberculosis-secreted protein antigen 85B (DNA-85B). Co-immunization with either IL-12- or IL-18-expressing plasmids augmented the IFN-gamma-secreting T-cell response, and the maximum effect was observed with plasmids encoding both cytokines. Further the IL-12, but not the IL-18-expressing plasmid, significantly increased the protective efficacy of DNA-85B against pulmonary M. tuberculosis infection. Therefore co-administration of plasmid-encoded cytokines provides a potential method for optimizing the protective efficacy of DNA vaccination against tuberculosis.  相似文献   

6.
Molecular clones of the subgroup A feline leukemia virus FeLV-A/Glasgow-1 have been obtained. Nucleotide sequence analysis of the 3' end of the proviral genome and comparison with the published sequence of FeLV-B/Gardner-Arnstein showed that the most extensive differences are located within the 5' domain of the env gene. Within this domain, several divergent regions of env are separated by more conserved segments. The 3' end of env is highly conserved, with only a single amino acid coding difference in p15env. The proviral long terminal repeats are also highly conserved, differing by only eight base substitutions and one base insertion. Specific probes constructed from the FeLV-A or FeLV-B env genes were used to compare the env genes of various exogenous FeLV isolates and the endogenous FeLV-related proviruses of normal cat DNA. An FeLV-A-derived env probe showed no hybridization to normal cat DNA but detected all FeLV-A and FeLV-C isolates tested. In contrast, an FeLV-B env probe detected independent FeLV-B isolates and a family of endogenous FeLV-related proviruses. Our observations provide strong evidence to support the hypothesis that FeLV-B viruses have arisen by recombination between FeLV-A and endogenous proviral elements in cat DNA.  相似文献   

7.
IL-12 induces monocyte IL-18 binding protein expression via IFN-gamma   总被引:6,自引:0,他引:6  
IL-18 is a Th1 cytokine that synergizes with IL-12 and IL-2 in the stimulation of lymphocyte IFN-gamma production. IL-18 binding protein (IL-18BP) is a recently discovered inhibitor of IL-18 that is distinct from the IL-1 and IL-18 receptor families. In this report we show that IL-18BPa, the IL-18BP isoform with the highest affinity for IL-18, was strongly induced by IL-12 in human PBMC. Other Th1 cytokines, including IFN-gamma, IL-2, IL-15, and IL-18, were also capable of augmenting IL-18BPa expression. In contrast, IL-1alpha, IL-1beta, TNF-alpha, IFN-gamma-inducible protein-10, and Th2 cytokines such as IL-4 and IL-10 did not induce IL-18BPa. Although monocytes were found to be the primary source of IL-18BPa, the induction of IL-18BPa by IL-12 was mediated through IFN-gamma derived predominantly from NK cells. IL-18BPa production was observed in cancer patients receiving recombinant human IL-12 and correlated with the magnitude of IFN-gamma production. The IFN-gamma/IL-18BPa negative feedback loop identified in this study may be capable of broadly controlling immune activation by cytokines that synergize with IL-18 to induce IFN-gamma and probably plays a key role in the modulation of both innate and adaptive immunity.  相似文献   

8.
9.
Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein. Here, we studied the activity of human and feline SER5 on HIV-1 and on the two pathogenic retroviruses in cats, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). HIV-1 in absence of Nef is restricted by SER5 from domestic cats and protected by its Nef protein. The sensitivity of feline retroviruses FIV and FeLV to human and feline SER5 is considerably different: FIV is sensitive to feline and human SER5 and lacks an obvious mechanism to counteract SER5 activity, while FeLV is relatively resistant to SER5 inhibition. We speculated that similar to MLV, FeLV-A or FeLV-B express glycoGag proteins and investigated their function against human and feline SER5 in wild type and envelope deficient virus variants. We found that the endogenous FeLV recombinant virus, FeLV-B but not wild type exogenous FeLV-A envelope mediates a strong resistance against human and feline SER5. GlycoGag has an additional but moderate role to enhance viral infectivity in the presence of SER5 that seems to be dependent on the FeLV envelope. These findings may explain, why in vivo FeLV-B has a selective advantage and causes higher FeLV levels in infected cats compared to infections of FeLV-A only.  相似文献   

10.
A naturally occurring feline thymic lymphosarcoma (T17) provided the unique observation of a T-cell antigen receptor beta-chain gene (v-tcr) transduced by a retrovirus. The primary tumor contained three classes of feline leukemia virus (FeLV) provirus, which have now been characterized in more detail as (i) v-tcr-containing recombinant proviruses, (ii) v-myc-containing recombinant proviruses, and (iii) apparently full-length helper FeLV proviruses. The two transductions appear to have been independent events, with distinct recombinational junctions and no sequence overlap in the host-derived inserts. The T17 tumor cell line releases large numbers of FeLV particles of low infectivity; all three genomes are encapsidated, but passage of FeLV-T17 on feline fibroblast and lymphoma cells led to selective loss of the recombinant viruses. The oncogenic potential of the T17 virus complex was, therefore, tested by infection of neonatal cats with virus harvested directly from the primary T17 tumor cell line. A single inoculation of FeLV-T17 caused persistent low-grade infection culminating in thymic lymphosarcoma and acute thymic atrophy, which was accelerated by coinfection with the weakly pathogenic FeLV subgroup A (FeLV-A)/Glasgow-1 helper. Molecularly cloned FeLV-tcr virus (T-31) rescued for replication by a weakly pathogenic FeLV-A/Glasgow-1 helper virus was similarly tested in vivo and induced thymic atrophy and thymic lymphosarcomas. Most FeLV-T17-induced tumors manifested either v-myc or an activated c-myc allele and had undergone rearrangement of endogenous T-cell antigen receptor beta-chain genes, supporting the proposition that the oncogenic effects of c-myc linked to the FeLV long terminal repeat are targeted to a specific window in T-cell differentiation. However, neither the FeLV-T17-induced tumors nor the T-31 + FeLV-A-induced tumors contained clonally represented v-tcr sequences. Only one of the FeLV-T17-induced tumors contained detectable v-tcr proviruses, at a low copy number. While v-tcr does not have a readily transmissible oncogenic function, a more restricted role is not excluded, perhaps involving antigenic peptide-major histocompatibility complex recognition by the T-cell receptor complex. Such a function could be obscured by the genetic diversity of the outbred domestic cat host.  相似文献   

11.
Current evidence suggests that a strong induced CD8 human immunodeficiency virus type 1 (HIV-1)-specific cell mediated immune response may be an important aspect of an HIV vaccine. The response rates and the magnitude of the CTL responses induced by current DNA vaccines in humans need to be improved and cellular immune responses to DNA vaccines can be enhanced in mice by co-delivering DNA plasmids expressing immune modulators. Two reported to work well in the mouse systems are interleukin (IL)-12 and CD40L. We sought to compare these molecular adjuvants in a primate model system. The cDNA for macaque IL-12 and CD40L were cloned into DNA vectors. Groups of cynomolgus macaques were immunized with 2 mg of plasmid expressing SIVgag alone or in combination with either IL-12 or CD40L. CD40L did not appear to enhance the cellular immune response to SIVgag antigen. However, more robust results were observed in animals co-injected with the IL-12 molecular adjuvant. The IL-12 expanded antigen-specific IFN-gamma positive effector cells as well as granzyme B production. The vaccine immune responses contained both a CD8 component as well a CD4 component. The adjuvanted DNA vaccines illustrate that IL-12 enhances a CD8 vaccine immune response, however, different cellular profiles.  相似文献   

12.
Protocols of immunization based on the DNA prime/vaccinia virus (VV) boost regime with recombinants expressing relevant antigens have been shown to elicit protection against a variety of pathogens in animal model systems, and various phase I clinical trials have been initiated with this vaccination approach. We have previously shown that mice immunized with a DNA vector expressing p36/LACK of Leishmania infantum followed by a booster with VVp36/LACK induced significant protection against Leishmania major infection. To further improve this protocol of immunization, here we investigated whether the cytokines interleukin-12 (IL-12) and IL-18 could enhance protection against L. major infection in BALB/c mice. We found that priming with DNA vectors expressing p36/LACK and either IL-12 or IL-18, followed by a booster with a VV recombinant expressing the same L. infantum LACK antigen, elicit a higher cellular immune response than by using the same protocol in the absence of the cytokines. The cytokine IL-12 triggered a higher number of IFN-gamma-secreting cells specific for p36 protein than IL-18. When immunized animals were challenged with promastigotes, the highest protection against L. major infection was observed in animals primed with DNAp36 + DNA IL-12 + DNA IL-18 and boosted with VVp36. This protection correlated with a Th1 type of immune response. Our findings revealed that in prime/booster protocols, co-expressing IL-12 and IL-18 during priming is an efficient approach to protect against leishmaniasis. This combined prime/booster immunization regime could have wide use in fighting against parasitic and other infectious diseases.  相似文献   

13.
A feline immunodeficiency virus (FIV) provirus with a vif gene deletion (FIVDelta vifATGgamma) that coexpresses feline gamma interferon (IFN-gamma) was tested as a proviral DNA vaccine to extend previous studies showing efficacy with an FIV-pPPRDelta vif DNA vaccine. Cats were vaccinated with either FIVDelta vifATGgamma or FIV-pPPRDelta vif proviral plasmid DNA or with both FIV-pPPRDelta vif DNA and a feline IFN-gamma expression plasmid (pCDNA-IFNgamma). A higher frequency of FIV-specific T-cell proliferation responses was observed in cats immunized with either FIVDelta vifATGgamma or FIV-pPPRDelta vif plus pCDNA-IFNgamma, while virus-specific cytotoxic-T-lymphocyte responses were comparable between vaccine groups. Antiviral antibodies were not observed postvaccination. Virus-specific cellular and humoral responses were similar between vaccine groups after challenge with a biological FIV isolate (FIV-PPR) at 13 weeks postimmunization. All vaccinated and unvaccinated cats were infected after FIV-PPR challenge and exhibited similar plasma virus loads. Accordingly, inclusion of plasmids containing IFN-gamma did not enhance the efficacy of FIV-pPPRDelta vif DNA immunization. Interestingly, the lack of protection associated with FIV-pPPRDelta vif DNA immunization contrasted with findings from a previous study and suggested that multiple factors, including timing of FIV-pPPRDelta vif inoculations and challenge, as well as route of challenge virus delivery, may significantly impact vaccine efficacy.  相似文献   

14.
Feline leukemia virus (FeLV) is a horizontally transmitted virus that causes a variety of proliferative and immunosuppressive diseases in cats. There are four subgroups of FeLV, A, B, C, and T, each of which has a distinct receptor requirement. The receptors for all but the FeLV-A subgroup have been defined previously. Here, we report the identification of the cellular receptor for FeLV-A, which is the most transmissible form of FeLV. The receptor cDNA was isolated using a gene transfer approach, which involved introducing sequences from a feline cell line permissive to FeLV-A into a murine cell line that was not permissive. The feline cDNA identified by this method was approximately 3.5 kb, and included an open reading frame predicted to encode a protein of 490 amino acids. This feline cDNA conferred susceptibility to FeLV-A when reintroduced into nonpermissive cells, but it did not render these cells permissive to any other FeLV subgroup. Moreover, these cells specifically bound FeLV-A-pseudotyped virus particles, indicating that the cDNA encodes a binding receptor for FeLV-A. The feline cDNA shares approximately 93% amino acid sequence identity with the human thiamine transport protein 1 (THTR1). The human THTR1 receptor was also functional as a receptor for FeLV-A, albeit with reduced efficiency compared to the feline orthologue. On the basis of these data, which strongly suggest the feline protein is the orthologue of human THTR1, we have named the feline receptor feTHTR1. Identification of this receptor will allow more detailed studies of the early events in FeLV transmission and may provide insights into FeLV pathogenesis.  相似文献   

15.
An important aspect of ocular herpes simplex virus type 1 (HSV-1) vaccine development is identification of an appropriate adjuvant capable of significantly reducing both virus replication in the eye and explant reactivation in trigeminal ganglia. We showed recently that a recombinant HSV-1 vaccine expressing interleukin-4 (IL-4) is more efficacious against ocular HSV-1 challenge than recombinant viruses expressing IL-2 or gamma interferon (IFN-gamma) (Y. Osorio and H. Ghiasi, J. Virol. 77:5774-5783, 2003). We have now constructed and compared recombinant HSV-1 viruses expressing IL-12p35 or IL-12p40 molecule with IL-4-expressing HSV-1 recombinant virus. BALB/c mice were immunized intraperitoneally with IL-12p35-, IL-12p40-, IL-12p35+IL-12p40-, or IL-4-expressing recombinant HSV-1 viruses. Controls included mice immunized with parental virus and mice immunized with the avirulent strain KOS. The efficacy of each vaccine in protecting against ocular challenge with HSV-1 was assessed in terms of survival, eye disease, virus replication in the eye, and explant reactivation. Neutralizing antibody titers, T-cell responses, and expression of 32 cytokines and chemokines were also evaluated. Mice immunized with recombinant HSV-1 expressing IL-12p35 exhibited the lowest virus replication in the eye, the most rapid virus clearance, and the lowest level of explant reactivation. The higher efficacy against ocular virus replication and explant reactivation correlated with higher neutralizing antibody titers, cytotoxic-T-lymphocyte activities, and IFN-gamma expression in recombinant HSV-1 expressing IL-12p35 compared to other vaccines. Mice immunized with both IL-12p35 and IL-12p40 had lower neutralizing antibody responses than mice immunized with IL-12p35 alone. Our results confirm that recombinant virus vaccines expressing cytokine genes can enhance the overall protection against infection, with the IL-12p35 vaccine being the most efficacious of those tested. Collectively, the results support the potential use of IL-12p35 as a vaccine adjuvant, without the toxicity-associated concerns of IL-12.  相似文献   

16.
IL-12 has been shown to enhance cellular immunity in vitro and in vivo. Recent reports have suggested that combining DNA vaccine approach with immune stimulatory molecules delivered as genes may significantly enhance Ag-specific immune responses in vivo. In particular, IL-12 molecules could constitute an important addition to a herpes vaccine by amplifying specific immune responses. Here we investigate the utility of IL-12 cDNA as an adjuvant for a herpes simplex virus-2 (HSV-2) DNA vaccine in a mouse challenge model. Direct i.m. injection of IL-12 cDNA induced activation of resting immune cells in vivo. Furthermore, coinjection with IL-12 cDNA and gD DNA vaccine inhibited both systemic gD-specific Ab and local Ab levels compared with gD plasmid vaccination alone. In contrast, Th cell proliferative responses and secretion of cytokines (IL-2 and IFN-gamma) and chemokines (RANTES and macrophage inflammatory protein-1alpha) were significantly increased by IL-12 coinjection. However, the production of cytokines (IL-4 and IL-10) and chemokine (MCP-1) was inhibited by IL-12 coinjection. IL-12 coinjection with a gD DNA vaccine showed significantly better protection from lethal HSV-2 challenge compared with gD DNA vaccination alone in both inbred and outbred mice. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vivo CD4+ T cell deletion. Thus, IL-12 cDNA as a DNA vaccine adjuvant drives Ag-specific Th1 type CD4+ T cell responses that result in reduced HSV-2-derived morbidity as well as mortality.  相似文献   

17.
BACKGROUND: Interferon (IFN)-gamma is a key to protective immunity against a variety of intracellular bacterial infections, including Chlamydia trachomatis. Interleukin (IL)-18, a recently identified Th1 cytokine, together with IL-12 is a strong stimulator for IFN-gamma production. We investigated the relative roles of IL-18 and IL- 12 in protective immunity to C. trachomatis mouse pneumonitis (MoPn) infection using gene knockout (KO) and wild-type (WT) mice. MATERIALS AND METHODS: Mice were intranasally infected with C. trachomatis MoPn and protective immunity was assessed among groups of mice by daily body weight changes, lung growth of MoPn, and histopathological appearances at day 10 postinfection. The corresponding immune responses for each group of mice at the same postinfection time point were evaluated by measuring antigen-specific antibody isotype responses and cytokine profiles. RESULTS: Our results showed that IL-18 deficiency had little or no influence on clearance of MoPn from the lung, although KO mice exhibited slightly more severe inflammatory reactions in lung tissues, as well as reduced systemic and local IFN-gamma production, compared with WT mice. Results with IL-18 KO mice were in sharp contrast to those observed with IL-12 KO mice that showed substantially reduced clearance of MoPn from the lungs, substantial reductions of antigen-specific systemic and lung IFN-gamma production, decreased ratio of MoPn-specific immunoglobulin G (IgG)2a/IgG1, and severe pathological changes in the lung with extensive polymorphonuclear, instead of mononuclear, cell infiltration. Exogenous IL-12 or IL-18 was able to increase IFN-gamma production in IL-18 KO mice; whereas, only exogenous IL-12, but not IL-18, enhanced IFN-gamma production in IL-12 KO mice. Caspase-1 is the key protease for activation of IL-18 precursor into the bioactive form, and caspase-1 KO mice also displayed similar bacterial clearance and body weight loss to that in WT mice at early stages of MoPn infection. This further confirmed that IL-18 was not essential for host defense against chlamydia infection. CONCLUSIONS: These results suggest that IL-12, rather than IL-18, plays the dominant role in the development of protective immunity against chlamydia lung infection, although both cytokines are involved in the in vivo regulation of IFN-gamma production.  相似文献   

18.
DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T-helper (Th)1-type cellular responses, we investigated the co-delivery of inteferon (IFN)-gamma, interleukin (IL)-12, and IL-18 genes along with DNA vaccine constructs. We observed that both antigen-specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non-human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co-immunization of IFN-gamma and IL-18 in macaques enhanced the level of antigen-specific antibody responses. Similarly, co-delivery of IL-12 and IL-18 also enhanced the level of antigen-specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.  相似文献   

19.
Comparative analysis of the genomes of feline leukemia viruses.   总被引:2,自引:2,他引:0       下载免费PDF全文
The genomes of several strains of feline leukemia virus (FeLV) were compared by two-dimensional polyacrylamide gel electrophoresis of the large RNase T1-resistant oligonucleotides of the 70S RNA. Differences between each strain of FeLV tested were detected by this method. We estimate that the degree of sequence identity between the viruses is: FeLV A (Glasgow-1) to FeLV B (Snyder-Theilen), 52%; FeLV A (Glasgow-1) to FeLV C(Sarma), 66%; FeLV B(Snyder-Theilen) to FeLV C (Sarma), 37%. The fingerprints of two independent isolates of FeLV strains of subgroup A (Glasgow-1 and Rickard) were detectably different. We conclude that the RNase T1 oligonucleotide fingerprint pattern provides a useful tool for identification of FeLV strains.  相似文献   

20.
Virus-specific T cells represent a hallmark of Ag-specific, adaptive immunity. However, some T cells also demonstrate innate functions, including non-Ag-specific IFN-gamma production in response to microbial products such as LPS or exposure to IL-12 and/or IL-18. In these studies we examined LPS-induced cytokine responses of CD8(+) T cells directly ex vivo. Following acute viral infection, 70-80% of virus-specific T cells will produce IFN-gamma after exposure to LPS-induced cytokines, and neutralization experiments indicate that this is mediated almost entirely through production of IL-12 and IL-18. Different combinations of these cytokines revealed that IL-12 decreases the threshold of T cell activation by IL-18, presenting a new perspective on IL-12/IL-18 synergy. Moreover, memory T cells demonstrate high IL-18R expression and respond effectively to the combination of IL-12 and IL-18, but cannot respond to IL-18 alone, even at high cytokine concentrations. This demonstrates that the synergy between IL-12 and IL-18 in triggering IFN-gamma production by memory T cells is not simply due to up-regulation of the surface receptor for IL-18, as shown previously with naive T cells. Together, these studies indicate how virus-specific T cells are able to bridge the gap between innate and adaptive immunity during unrelated microbial infections, while attempting to protect the host from cytokine-induced immunopathology and endotoxic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号