首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been made of conformational parameters in co-crystal complexes and compounds of nucleic acid bases in which there is the possibility of formation of hetero-base-pairs. Using published data extracted from the Cambridge structural database, a total of 37 base-pairs were found, of which 25 were hetero-pairs and 12 homo-pairs. These base-pairs were subject to analysis to reveal hydrogen bond parameters, propeller twist, buckle and C1'-C1' separation (or a similar parameter if C1' atoms were not present). Hetero-pairs were found to show larger twists than homo-pairs, the magnitude of twist being unrelated to hydrogen bond parameters or buckle value. The propeller twisting is less pronounced in these nucleic acid bases than in nucleosides, but still has a significant magnitude. Propeller twisting in hetero-pairs is found to be larger than in homo-pairs. Hetero-pairs appear to be formed preferentially in competitive situations.  相似文献   

2.
Studies have been made of conformational parameters in single crystal structures of very short chain oligonucleotides consisting of strands with lengths in the range 2-3 bases. Using published data extracted from the Cambridge structural database for 20 such structures, a total of 14 base-pairs were found, of which 10 were hetero-pairs and 4 homo-pairs. Subjecting these to analysis to examine hydrogen bond parameters, propeller twist, buckle and C1'-C1' separation revealed an average propeller twist of 11.6 degrees, with no dependence of this parameter on hydrogen bonding details. In addition, an analysis of base stacking showed there to be no correlation between in-plane geometry and degree of inter-plane overlap.  相似文献   

3.
Studies have been made of base-pairing conformational parameters in single crystal structures of very short chain oligonucleotide structures complexed with drug molecules, using data extracted from the Cambridge structural database. The planar portion of the drug has a tendency to intercalate between two bases, utilising strong stacking interactions to stabilise the configuration. The effect of the existence of a formative backbone is seen in the high occurrence of standard base-pairing schemes and a consistent C1'-C1' separation, although the choice of compounds studied does tend to emphasise complementary pairing. In addition to the modulation of the general magnitude which is reduced from that in uncomplexed oligonucleotides, there appears to be some correlation of propeller twist value with the presence of planar groups sandwiching a base-pair. The average twist in such sandwiched pairs is lower than in any other group studied to date.  相似文献   

4.
The crystal and molecular structures of the antiviral compound 1-(2-hydroxyethoxymethyl)-1,2,4-triazole-5-carboxamide has been determined by the X-ray diffraction method. The space group is P2i/c, unit cell parameters a = 4,381, b = 18,679, c = 10,776 A, beta = 107,40 degrees, Z = 4. The structure was solved by the direct method and refined by a full-matrix least-squares procedure to R = 4.9%. Two planar groups of atoms can be distinguished in the molecule. The first group involves the atoms of triazole ring, C6, and C1', the second one contains C5, C6, O6 and N6 atoms. The angle between these planes is 5.6 degrees. The carboxyamide group is rotated by 180 degrees in comparison with this group in ribavirin. That is why the intramolecular hydrogen bond C1'-H1'. 1...O6 can form. Torsion angle O5'-C5'-C4'-O4' is 73.9 degrees and it corresponds to gauche-rotamer. The conformation about O4'-C4' bond is trans. The C1'-C4' bond is approximately perpendicular to the aglycone.  相似文献   

5.
X-ray structure of the title compound, an antiviral agent moderately active towards Herpes simplex virus type 1, has been determined. The space group is P2i/n, unit cell parameters: a = 10,119, b = 7,529, c = 13,585 A, beta = 107,82 degrees, Z = 4. The structure was solved by the direct method and refined by least-squares procedure to R = 2.9%. The gauche-conformation about C4'-C5' bond and trans-conformation about O4'-C4' bond are realized in the molecule. The carboxyamide group at the C5 atom of triazol cycle provides a steric opportunity for the intramolecular hydrogen bond C1'-H1'...O6 formation.  相似文献   

6.
The crystal structure of the dodecamer, d(CGCIAATTCGCG), has been determined at 2.4 A resolution by molecular replacement, and refined to an R-factor of 0.174. The structure is isomorphous with that of the B-DNA dodecamer, d(CGCGAATTCGCG), in space group P2(1)2(1)2(1) with cell dimensions of a = 24.9, b = 40.4, and c = 66.4 A. The initial difference Fourier maps clearly indicated the presence of inosine instead of guanine. The structure was refined with 44 water molecules, and compared to the parent dodecamer. Overall the two structures are very similar, and the I:C forms Watson-Crick base pairs with similar hydrogen bond geometry to the G:C base pairs. The propeller twist angle is low for I4:C21 and relatively high for the I16:C9 base pair (-3.2 degrees compared to -23.0 degrees), and the buckle angles alter, probably due to differences in the contacts with symmetry related molecules in the crystal lattice. The central base pairs of d(CGCIAATTCGCG) show the large propeller twist angles, and the narrow minor groove that characterize A-tract DNA, although I:C base pairs cannot form the major groove bifurcated hydrogen bonds that are possible for A:T base pairs.  相似文献   

7.
Computational methods have played a key role in elucidating the various three-dimensional structures of oligosaccharides. Such structural information, together with other experimental data, leads to a better understanding of the role of oligosaccharide in various biological processes. The disialoside Neu5Ac-alpha2-->8-Neu5Ac appears as the terminal glycan in glycoproteins and glycolipids, and is known to play an important role in various events of cellular communication. Neurotoxins such as botulinum and tetanus require Neu5Ac-alpha2 --> 8-Neu5Ac for infecting the host. Glycoconjugates containing this disialoside and the enzymes catalyzing their biosynthesis are also regulated during cell growth, development, and differentiation. Unlike other biologically relevant disaccharides that have only two linkage bonds, the alpha2-->8-linked disialoside has four: C2-O, O-C8', C8'-C7', and C7'-C6'. The present report describes the results from nine 1 ns MD simulations of alpha2-->8-linked disialoside (Neu5Ac-alpha2-->8-Neu5Ac); simulations were run using GROMOS96 by explicitly considering the solvent molecules. Conformations around the O-C8' bond are restricted to the +sc/+ap regions due to stereochemical reasons. In contrast, conformations around the C2-O and C8'-C7' bonds were found to be largely unrestricted and all the three staggered regions are accessible. The conformations around the C7'-C6' bond were found to be in either the -sc or the anti region. These results are in excellent agreement with the available NMR and potential energy calculation studies. Overall, the disaccharide is flexible and adopts mainly two ensembles of conformations differing in the conformation around the C7'-C6' bond. The flexibility associated with this disaccharide allows for better optimization of intermolecular contacts while binding to proteins and this may partially compensate for the loss of conformational entropy that may be incurred due to disaccharide's flexibility.  相似文献   

8.
The results of this theoretical study combining sequence analysis and minimization with integral equation liquid structural methods indicate that the local sequence context of a T-G wobble mismatch influences the local conformation of the helix, and that conformational alterations are correlated with mutational activity. Studies on the mismatch in four different 5' and 3' neighbor contexts indicate that the nature of the 5' base to the thymine of the mispair is probably the single most critical factor in determining the structural features that facilitate or discourage mutations. When cytosine is the 5' neighbor, the helix adopts a mostly BII conformation, whereas a 5' guanine preserves the canonical BI. Structures that vary little from the BI structure on the incorporation of the mismatch have sequences that correspond to lower rates of transition, whereas those with mostly BII conformations, have sequences with high mutation rates. Subtle variations in stacking patterns around the mismatch precipitate a structural Domino-effect, with a variety of changes in conformation. The helix opens at the mismatch with increased roll angle and propeller twist, causing the thymine to migrate into the major groove and the guanine into the minor groove, exposing the heteroatomic groups to the solvent in the major and minor grooves, respectively, and allowing for some unusual hydrogen bonds. These alterations show a tentative correlation with mutation rates, implying that stacking and structure around the mismatch are important features in the discrimination by proofreading activities of canonical W-C and wobble mismatch base pairs during replication-repair. Variations in the C1'-C1' distances, high propeller twists, changes in the electrostatic complementarity leading to unusual hydrogen bonding patterns probably all correlate with detectability.  相似文献   

9.
The TT mismatch region in duplex d (CGCGATTCGCG) was studied using a 500-ps molecular dynamics (MD) simulation in water, and a series of 1-ps MD simulations and energy minimizations in vacuum. The DNA maintained its duplex structure, although the mismatch region showed significantly higher flexibility than the GC regions. The predominant conformation in the 500-ps MD simulation involved an average -42 degrees propeller twist between T6 and T'6, and a -22 degree buckle between A5 and T'7. One hydrogen bond was formed between T6 and T'6, and another between T6 and the O2 of T'7, with both Watson-Crick hydrogen bonds between A5 and T'7 remaining intact. The minimizations resulted in conformations with the equivalent hydrogen-bonding pattern, as well as ones with "wobble pair" hydrogen bonds between T6 and T'6. However, the wobble pair conformation was found to be unstable in the water simulation.  相似文献   

10.
11.
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands.  相似文献   

12.
In an accurately determined X-ray diffraction study of the thyroid hormone thyroxine (T4), the two independent conformations in the crystal lattice show significant differences in the outer phenyl ring geometry when compared with that of 3,5,3'-triiodothyronine (T3). The major differences between the T4 and T3 structures are a shortened C4'-O4' bond, contraction of the C3'-C4'-C5' angle and an increase in the C3' and C5' angles of T4. These changes can be correlated with the difference in acidity of the 4'-OH of T4 and T3 and help to explain binding affinity differences among thyroactive compounds. The hydrogen bond directionality observed in T4 and other thyroid structures offers an insight into the molecular details of the hormone-receptor site. The conformation of one T4 molecule is cisoid, that of the other transoid, the first such instance of different overall conformations to be found in the same crystal lattice. One T4 molecule has the side chain nearly coplanar with the inner ring, an unusual conformation among thyroid structures.  相似文献   

13.
X-ray crystallographic studies on 3'-5' oligomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little information available on 2'-5' polynucleotides. We have now obtained the crystal structure of Cytidylyl-2',5'-Adenosine (C2'p5'A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dinucleoside phosphate crystallises in the monoclinic space group C2, with a = 33.912(4)A, b = 16.824(4)A, c = 12.898(2)A and beta = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2'p5'A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3'-5' analog but contrasts the anti and syn geometry of C and A residues in A2'p5'C. The furanose ring conformation is C3' endo, C2' endo mixed puckering as in the C3'p5'A-proflavine complex. A comparison of the backbone torsion angles with other 2'-5' dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3'-C2' and C4'-C3' bonds. A right-handed 2'-5' parallel stranded double helix having eight base pairs per turn and 45 degrees turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2'-5' parallel stranded double helix and its relevance to biological systems is presented.  相似文献   

14.
Conformational properties of branched RNA fragments in aqueous solution   总被引:1,自引:0,他引:1  
M J Damha  K K Ogilvie 《Biochemistry》1988,27(17):6403-6416
The conformational properties of branched trinucleoside diphosphates ACC, ACG, AGC, AGG, AUU, AGU, AUG, ATT, GUU, and aAUU [XYZ = X(2'p5'Y)3'p5'Z] have been studied in aqueous solution by nuclear magnetic resonance (1H, 13C), ultraviolet absorption, and circular dichroism. It is concluded from these studies that the purine ring of the central residue (X; e.g., adenosine) forms a base-base stack exclusively with the purine or pyrimidine ring of the 2'-nucleotidyl unit (Y; 2'-residue). The residue attached to the central nucleoside via the 3'-5'-linkage (Z; 3'-residue) is "free" from the influence of the other two heterocyclic rings. The ribose rings of the central nucleoside and the 2'- and 3'-residues exist as equilibrium mixtures of C2'-endo (2E)-C3'-endo (3E) conformers. The furanose ring of the central nucleoside (e.g., A) when linked to a pyrimidine nucleoside via the 2'-5'-linkage shows a higher preference for the 2E pucker conformation (e.g., AUG, AUU, ACG, ca. 80%) than those linked to a guanosine nucleoside through the same type of bond (AGU, AGG, AGC, ca. 70%). This indicates some correlation between nucleotide sequence and ribose conformational equilibrium. The 2E-3E equilibrium of 2'-pyrimidines (Y) shows significant, sometimes exclusive, preference (70-100%) for the 3E conformation; 3'-pyrimidines and 2'-guanosines have nearly equal 2E and 3E rotamer populations; and the ribose conformational equilibrium of 3'-guanosines shows a preference (60-65%) for the 2E pucker. Conformational properties were quantitatively evaluated for most of the bonds (C4'-C5', C5'-O5', C2'-O2', and C3'-O3') in the branched "trinucleotides" AUU and AGG by analysis of 1H-1H, 1H-31P, and 13C-31P coupling constants. The C4'-C5' bond of the adenosine units shows a significant preference for the gamma + conformation. The dominant conformation about C4'-C5' and C5'-O5' for the 2'-and 3'-nucleotidyl units is gamma + and beta t, respectively, with larger gamma + and beta t rotamer populations for the 2'-unit. The increased conformational purity in the 2'-residue, compared to the 3'-residue, is ascribed to the presence of an ordered (adenine----2'-residue) stacked state. The favored rotamers about C3'-O3' and C2'-O2' are epsilon- and epsilon'-, respectively. The conformational features of AUU and AGG were compared to those of their constitutive dimers A3'p5'G, A2'p5'G, A3'p5'U, and A2'p5'U and monomers 5'pG and 5'pU.  相似文献   

15.
The crystal and molecular structure of a ribavirin acyclic analogue, 1-(2-hydroxyethoxymethyl)-1,2,4-triazole-3-carboxamide, has been determined by X-ray diffraction method. The space group is P1, unit cell parameters: a = 5,237, b = 6,960, c = 11,483 A, alpha = 93,89, beta = 97,43, gamma = 94,26 degrees; Z = 2. The structure was solved by the direct method and refined by least-squares procedure to R = 3.7%. Two molecular conformers statistically coexist in the unit cell, differing in the hydroxyethoxymethyl group conformation. Trans-conformation about O4'-C4' bond and gauche about C4'-C5' bond are observed in both molecules. C1'-O4' bond is approximately perpendicular to the aglicon.  相似文献   

16.
S Yokoyama  F Inagaki  T Miyazawa 《Biochemistry》1981,20(10):2981-2988
An advanced method was developed for lanthanide-probe analyses of the conformations of flexible biomolecules such as nucleotides. The new method is to determine structure parameters (such as internal-rotation angles) and population parameters for local conformational equilibria of flexible sites, together with standard deviations of these parameters. As the prominent advantage of this method, the interrelations among local conformations of flexible sites may be quantitatively elucidated from the experimental data of lanthanide-induced shifts and relaxations and vicinal coupling constants. As a structural unit of ribonucleic acids, the molecular conformations and conformational equilibria of uridine 3'-monophosphate in aqueous solution were analyzed. The stable local conformers about the C3'-O3' bond are the G+ (phi' = 281 +/- 11 degrees) and G- (phi' = 211 +/- 8 degrees) forms. The internal rotation about the C3'-O3' bond and the ribose-ring puckering are interrelated; 97 +/- 5% of the C3'-endo ribose ring is associated with the G- form while 70 +/- 22% o the C2'-endo ribose ring is associated with the G+ form. An interdependency also exists between the internal rotation about the C4'-C5' bond and the ribose-ring puckering. These short-range conformational interrelations are probably important in controlling the dynamic aspects of ribonucleic acid structures.  相似文献   

17.
The effect of G.T mispair incorporation into a double-helical environment was examined by molecular dynamics simulation. The 60-ps simulations performed on the two hexanucleotide duplexes d (G3C3)2 and d(G3TC2)2 included 10 Na+ counterions and first hydration shell waters. The resulting backbone torsional angle trajectories were analyzed to select time spans representative of conformational domains. The average backbone angles and helical parameters of the last time span for both duplexes are reported. During the simulation the hexamers retained B-type DNA structures that differed from typical A- or B-DNA forms. The overall helical structures for the two duplexes are vary similar. The presence of G.T mispairs did not alter the overall helical structure of the oligonucleotide duplex. Large propeller twist and buckle angles were obtained for both duplexes. The purine/pyrimidine crossover step showed a large decrease in propeller twist in the normal duplex but not in the mismatch duplex. Upon the formation of wobble mispairs in the mismatched duplex, the guanines moved into the minor groove and the thymines moved into the major groove. This helped prevent purine/purine clash and created a deformation in the relative orientation of the glycosidic bonds. It also exposed the free O4 of the thymines in the major groove and N2 of the guanines in the minor groove to interactions with solvent and counterions. These factors seemed to contribute to the apparently higher rigidity of the mismatched duplex during the simulation.  相似文献   

18.
The structure of the octamer d(G-T-G-T-A-C-A-C) was determined in two different crystal forms, tetragonal P4(3)2(1)2 and hexagonal P6(1)22. Although in both forms the octamer adopts an A-DNA structure, there are significant conformational differences between them. In particular, the P-05' and the C5'-C4' bonds of the middle adenine (A5) residue exhibit a distorted trans-trans conformation in the tetragonal form, while they adopt the standard gauche-, gauche+ conformation in the hexagonal form. These differences can be correlated with certain features of the crystal packing interactions in the two forms. Furthermore, a comparison of the structures of various A-DNA octamers reveals that the A-form can be divided into two subclasses such that the hexagonal structures have helical and base pair parameters that fall closer to fiber A-DNA values, while in the tetragonal structures these parameters deviate more from fiber A-DNA. These results indicate that environment plays a major role in determining DNA conformation.  相似文献   

19.
To understand why different nucleotide sequences prefer different double helical conformations and to predict conformational behaviour of definite sequences the base-base interaction energy in regular helices consisting of A:U, A:T, G:C and I:C (hypoxanthine-cytosine) base pairs was calculated. Interaction energy was assumed to be a function of eight conformational parameters: H, the distance between adjacent pairs along helix axes; tau, turn angle of one pair relative to the neighbouring one; angles between base planes in a pair (TW, propeller twist and BL, buckle) and position of pairs with respect to helix axes (D and SL, displacements in the plane normal to helix axes, and TL and RL, inclinations to this plane, tilt and roll, respectively). For H and tau characteristic of A- and B-families of nucleic acid conformations (2.5 A less than H less than or equal to 3.5 A, 30 degrees less than or equal to tau less than or equal to 45 degrees) the ranges of conformational parameters corresponding to energy values close to minimal ones (valleys) and correlations between conformational parameters were revealed. Valleys for different sequences largely coincide but have distinctive characteristics for each sequence. Reasons for base pair planarity distortion in double-stranded helices were considered. The calculations permit to account for A-phility of G:C sequences and B-phility for A:T sequences. The valley for I:C sequence branches. This corresponds to A:T-like behaviour in some cases and G:C-like in the others.  相似文献   

20.
Carbon-13 NMR spectra of the deoxyribonucleotide d(TpA), 3',5'-cyclic AMP and 3',5'-cyclic dAMP were measured. It is shown that the different substitution of C2' in deoxyribonucleotides versus ribonucleotides does not affect the vicinal C2'-C3'-O3'-P coupling to a measurable extent. Therefore, the same set of Karplus parameters may be used for the C2'-C3-O3'-P couplings in ribonucleotides and in deoxyribonucleotides. Vicinal carbon-phosphorus and proton-phosphorus coupling constants are used to calculate the magnitude of the torsion angle epsilon (C4'-C3'-O3'-P), which amounts to 195(0) in the trans conformer and to 261(0) in the gauche(-) conformer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号