首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788-1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22-24-kD domain.  相似文献   

2.
We have detected and begun to characterize a 17-kD centromere-specific protein, CENP-A (Earnshaw, W. C., and N. Rothfield, 1985, Chromosoma., 91:313-321). Sera from several humans with CREST scleroderma autoimmune disease (CREST: calcinosis, Raynaud's phenomenon, esophageal dsymotility, sclerodactyly, and telangiectasia) bind this protein in immunoblot assays of HeLa whole cell or nuclear extracts. We have affinity purified the anti-17-kD centromere protein (anti-CENP-A) specific antibodies from immunoblots of HeLa nuclear protein. The antibodies react with epitopes present on CENP-A derived from humans but apparently do not recognize specific epitopes in either rat or chicken nuclei. Only human nuclear protein is CENP-A positive by immunoblot. Furthermore, human cells show localization of anti-CENP-A antibody to centromeres by immunofluorescence microscopy, whereas rat cells do not. On extraction from the nucleus, CENP-A copurifies with core histones and with nucleosome core particles. We conclude that this centromere-specific protein is a histone-like component of chromatin. The data suggest that CENP-A functions as a centromere-specific core histone.  相似文献   

3.
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.  相似文献   

4.
The erythroid membrane cytoskeletal protein 4.1 is the prototypical member of a genetically and topologically complex family that is generated by combinatorial alternative splicing pathways and is localized at diverse intracellular sites including the nucleus. To explore the molecular determinants for nuclear localization, we transfected COS-7 cells with epitope-tagged versions of natural red cell protein 4.1 (4.1R) isoforms as well as mutagenized and truncated derivatives. Two distant topological sorting signals were required for efficient nuclear import of the 4.1R80 isoform: a basic peptide, KKKRER, encoded by alternative exon 16 and acting as a weak core nuclear localization signal (4.1R NLS), and an acidic peptide, EED, encoded by alternative exon 5. 4.1R80 isoforms lacking either of these two exons showed decreased nuclear import. Fusion of various 4.1R80 constructs to the cytoplasmic reporter protein pyruvate kinase confirmed a requirement for both motifs for full NLS function. 4.1R80 was efficiently imported in the nuclei of digitonin-permeabilized COS-7 cells in the presence of recombinant Rch1 (human importin alpha2), importin beta, and GTPase Ran. Quantitative analysis of protein-protein interactions using a resonant mirror detection technique showed that 4.1R80 bound to Rch1 in vitro with high affinity (KD = 30 nM). The affinity decreased at least 7- and 20-fold, respectively, if the EED motif in exon 5 or if 4.1R NLS in exon 16 was lacking or mutated, confirming that both motifs were required for efficient importin-mediated nuclear import of 4.1R80.  相似文献   

5.
We have produced monoclonal antibodies against purified nuclei from the yeast Saccharomyces cerevisiae and have characterized three different antibodies that recognize a protein with an apparent molecular weight of 38,000, termed p38. Subcellular fractionation shows that virtually all of p38 occurs in the nuclear fraction. High concentrations of salt (1 M) or urea (6 M) effectively solubilize p38 from a nuclear envelope fraction prepared by digestion of nuclei with DNase. Indirect immunofluorescence demonstrates a crescent shaped distribution of p38 at the inner periphery of the nucleus, with p38 extending between dividing pairs of cells during (closed) mitosis. Postembedding immunogold electron microscopy shows decoration of the densely stained "crescent" region of the yeast nucleus, confirming the localization of p38 to the nucleolus. One of the monoclonals, D77, cross reacts on immunoblots with a single protein of molecular weight 37,000 from purified rat liver nuclei. Indirect immunofluorescence localizes this protein to the nucleolus, and shows that it is dispersed throughout the cell during mitosis. The yeast and rat liver nucleolar proteins behave similarly when electrophoresed in two dimensions, and appear to have basic pI values. Analysis of immunological cross-reactivity using D77, and antibodies specific for nucleolar proteins from other sources, suggests that the rat liver protein is fibrillarin, and demonstrates that p38 shares epitopes with fibrillarin, as well as with other vertebrate nucleolar proteins.  相似文献   

6.
A protein of 62 kD is a substrate of a calcium/calmodulin-dependent protein kinase, and both proteins copurify with isolated mitotic apparatuses (Dinsmore, J. H., and R. D. Sloboda. 1988. Cell. 53:769-780). Phosphorylation of the 62-kD protein increases after fertilization; maximum incorporation of phosphate occurs during late metaphase and anaphase and correlates directly with microtubule disassembly as determined by in vitro experiments with isolated mitotic apparatuses. Because 62-kD protein phosphorylation occurs in a pattern similar to the accumulation of the mitotic cyclin proteins, experiments were performed to determine the relationship between cyclin and the 62-kD protein. Continuous labeling of marine embryos with [35S]methionine, as well as immunoblots of marine embryo proteins using specific antibodies, were used to identify both cyclin and the 62-kD protein. These results clearly demonstrate that the 62-kD protein is distinct from cyclin and, unlike cyclin, is a constant member of the cellular protein pool during the first two cell cycles in sea urchin and surf clam embryos. Similar results were obtained using immunofluorescence microscopy of intact eggs and embryos. In addition, immunogold electron microscopy reveals that the 62-kD protein associates with the microtubules of the mitotic apparatus in dividing cells. Interestingly, the protein changes its subcellular distribution with respect to microtubules during the cell cycle. Specifically, during mitosis the 62-kD protein associates with the mitotic apparatus; before nuclear envelope breakdown, however, the 62-kD protein is confined to the nucleus. After anaphase, the 62-kD protein returns to the nucleus, where it resides until nuclear envelope disassembly of the next cell cycle.  相似文献   

7.
Salt-extracted proteins of taxol-stabilized microtubules from Chinese hamster ovary cells arrested at mitosis were used to immunize mice for hybridoma production. From a group of related monoclonal antibodies (MAbs), one, C9, recognized an epitope on antigens localized by immunofluorescence microscopy to interphase centrosomes and nuclei. The availability of the nuclear antigen was cell cycle-dependent; however, permeabilization of cells before fixation revealed that the antigen was present throughout the cell cycle. The nuclear antigen was exposed during prophase and was released from the nucleus upon nuclear envelope breakdown filling the cytoplasm of the mitotic cell. Antigenic material re-accumulated at daughter nuclei and was concealed during G1 phase. Detergent extraction of the cytoplasmic antigen from mitotic cells enabled localization of antigens to centrosomes, kinetochores, and the furrowing region/midbody. Immunoblot analysis of cells of a variety of species of origin identified an approximate 250 kD polypeptide as corresponding to the nuclear antigen, whereas polypeptides of 107/117 kD as well as approximately 250 kD accounted for the mitotic cytoplasmic antigens. No polypeptides could be associated with antigens at centrosomes, kinetochores, or midbodies. This MAb joins the antibody preparations previously reported that describe nuclear antigens, or epitopes on antigens, enhanced at mitosis.  相似文献   

8.
Mapping replicational sites in the eucaryotic cell nucleus   总被引:52,自引:17,他引:35       下载免费PDF全文
We have used fluorescent microscopy to map DNA replication sites in the interphase cell nucleus after incorporation of biotinylated dUTP into permeabilized PtK-1 kangaroo kidney or 3T3 mouse fibroblast cells. Discrete replication granules were found distributed throughout the nuclear interior and along the periphery. Three distinct patterns of replication sites in relationship to chromatin domains in the cell nucleus and the period of S phase were detected and termed type I (early to mid S), type II (mid to late S) and type III (late S). Similar patterns were seen with in vivo replicated DNA using antibodies to 5-bromodeoxyuridine. Extraction of the permeabilized cells with DNase I and 0.2 M ammonium sulfate revealed a striking maintenance of these replication granules and their distinct intranuclear arrangements with the remaining nuclear matrix structures despite the removal of greater than 90% of the total nuclear DNA. The in situ prepared nuclear matrix structures also incorporated biotinylated dUTP into replication granules that were indistinguishable from those detected within the intact nucleus.  相似文献   

9.
Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.  相似文献   

10.
11.
We have used a monoclonal antibody raised against rat liver nuclear proteins to study two cross-reactive proteins in the yeast nucleus. In rat liver, this monoclonal antibody, mAb 414, binds to nuclear pore complex proteins, including one of molecular weight 62,000 (Davis, L. I., and G. Blobel. 1987. Proc. Natl. Acad. Sci. USA. 84:7552-7556). In yeast, mAb 414 cross reacts by immunoblotting with two proteins that have apparent molecular weights of 110,000 and 95,000, and are termed p110 and p95, respectively. Examination of subcellular fractions by immunoblotting shows that both p110 and p95 are located exclusively in the nuclear fraction. The mAb 414 immunoprecipitates several proteins from a crude yeast cell extract, including p110, p95, and a approximately 55-kD protein. Immunoprecipitation from subcellular fractions yields only p110 and p95 from purified nuclei, whereas the approximately 55-kD protein is immunoprecipitated from the soluble fraction. Digestion of purified nuclei with DNase to produce nuclear envelopes releases some of p110, but the majority of p110 is solubilized only after treatment of envelopes with 1 M NaCl. Immunofluorescence localization using yeast cells and isolated nuclei shows a punctate and patchy staining pattern of the nucleus. Confocal laser scanning immunofluorescence microscopy resolves the punctate and patchy staining pattern better and shows regions of fluorescence at the nuclear envelope. Postembedding immunogold electron microscopy using purified nuclei and mAb 414 shows colloidal gold decoration of the yeast nuclear envelope, but resolves pore complexes too poorly to achieve further ultrastructural localization. Immunogold labeling of nuclei followed by embedding suggests decoration of pore complexes. Thus, p110 and/or p95 are localized to the nuclear envelope in yeast, and may be components of the nuclear pore complex.  相似文献   

12.
This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis.  相似文献   

13.
In red blood cells, protein 4.1 (4.1R) is an 80-kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane. The picture is more complex in nucleated cells, in which many 4.1R isoforms, varying in size and intracellular location, have been identified. To contribute to the characterization of signals involved in differential intracellular localization of 4.1R, we have analyzed the role the exon 5-encoded sequence plays in 4.1R distribution. We show that exon 5 encodes a leucine-rich sequence that shares key features with nuclear export signals (NESs). This sequence adopts the topology employed for NESs of other proteins and conserves two hydrophobic residues that are shown to be critical for NES function. A 4.1R isoform expressing the leucine-rich sequence binds to the export receptor CRM1 in a RanGTP-dependent fashion, whereas this does not occur in a mutant whose two conserved hydrophobic residues are substituted. These two residues are also essential for 4.1R intracellular distribution, because the 4.1R protein containing the leucine-rich sequence localizes in the cytoplasm, whereas the mutant protein predominantly accumulates in the nucleus. We hypothesize that the leucine-rich sequence in 4.1R controls distribution and concomitantly function of a specific set of 4.1R isoforms.  相似文献   

14.
Karyogamy, or nuclear fusion, is essential for sexual reproduction. In angiosperms, karyogamy occurs three times: twice during double fertilization of the egg cell and the central cell and once during female gametophyte development when the two polar nuclei fuse to form the diploid central cell nucleus. The molecular mechanisms controlling karyogamy are poorly understood. We have identified nine female gametophyte mutants in Arabidopsis (Arabidopsis thaliana), nuclear fusion defective1 (nfd1) to nfd9, that are defective in fusion of the polar nuclei. In the nfd1 to nfd6 mutants, failure of fusion of the polar nuclei is the only defect detected during megagametogenesis. nfd1 is also affected in karyogamy during double fertilization. Using transmission electron microscopy, we showed that nfd1 nuclei fail to undergo fusion of the outer nuclear membranes. nfd1 contains a T-DNA insertion in RPL21M that is predicted to encode the mitochondrial 50S ribosomal subunit L21, and a wild-type copy of this gene rescues the mutant phenotype. Consistent with the predicted function of this gene, an NFD1-green fluorescent protein fusion protein localizes to mitochondria and the NFD1/RPL21M gene is expressed throughout the plant. The nfd3, nfd4, nfd5, and nfd6 mutants also contain T-DNA insertions in genes predicted to encode proteins that localize to mitochondria, suggesting a role for this organelle in nuclear fusion.  相似文献   

15.
16.
Short stretches of amino acids, termed nuclear localization sequences (NLS), can mediate assembly of proteins into the nucleus. Proteins from the yeast, Saccharomyces cerevisiae, have been identified that specifically recognize nuclear localization peptides (Silver, P., I. Sadler, and M. A. Osborne. 1989. J. Cell Biol. 109:983-989). We now further define the role of one of these NLS-binding proteins in nuclear protein localization. The NLS-binding protein of 70-kD molecular mass can be purified from salt extracts of nuclei. Antibodies raised against the NLS-binding protein localized the protein mainly to the nucleus with minor amounts in the cytoplasm. These antibodies also inhibited the association of NLS-protein conjugates with nuclei. Incubation of nuclei with proteases coupled to agarose removed NLS-binding protein activity. Extracts enriched for NLS-binding proteins can be added back to salt or protease-treated nuclei to restore NLS-binding activity. These results suggest that the first step of nuclear protein import can be reconstituted in vitro.  相似文献   

17.
By means of a monoclonal antibody (BH3), we have identified a 57-kD protein (p57) that in interphase is restricted largely to the perinuclear region of the cell. Double label immunofluorescence microscopy suggests localization of p57 to the Golgi complex and associated membranous structures. Protease protection experiments and chemical extractability indicate that p57 is a peripheral membrane protein exposed to the cytoplasm. p57 displays unique behavior during mitosis. At the end of G2 or in early prophase, p57 leaves the perinuclear region and accumulates very rapidly within the nucleus, at a time when the nuclear envelope is still intact and before nuclear lamina disassembly. This relocation of p57 coincides with its hyperphosphorylation on serine and threonine residues. After nuclear envelope breakdown p57 becomes uniformly distributed throughout the mitotic cytoplasm until in late telophase when it returns to its perinuclear location and is once again excluded from the nucleus. The behavior of p57 during mitosis suggests that it may play a role in the cellular reorganization evident during mitotic prophase.  相似文献   

18.
Protein kinases are thought to play a key role in signal transduction and oncogenesis, but little is known about the intranuclear phosphorylation events associated with transformation. Here we report on cell cycle-dependent phosphorylation of cytoskeleton-associated 350 kD protein and the regular interchange in its location between the nucleus and cytoplasm of normal cells. Persistent intranuclear location of the phosphorylated 350 kD protein was also found throughout the cell cycle in transformed cells, as detected by immunoprecipitation of 32P-phosphorylated 350 kD protein from isolated nuclei and immunofluorescent staining with a monoclonal antibody that recognized phosphorylated site of 350 kD protein. A conditional transformed phenotype induced by a temperature-sensitive (ts) viral oncogene or a transforming growth factor was also associated with the intranuclear presence of the phosphorylated 350 kD protein. Thus the 350 kD protein seems to be a target molecule of protein kinases that are stimulated directly or indirectly by growth factors or by oncogene products in the nucleus, and appears to be a new transformation-related nuclear antigen.  相似文献   

19.
20.
Nuclear transfer (NT) is used to elucidate fundamental biological issues such as reversibility of cell differentiation and interactions between the cytoplasm and nucleus. To obtain an insight into interactions between the somatic cell nucleus and oocyte cytoplasm, nuclear remodeling and gene expression were compared in bovine oocytes that had received nuclei from bovine and mouse fibroblast cells. While the embryos that received nuclei from bovine fibroblast cells developed into blastocysts, those that received nuclei from mouse fibroblasts did not develop beyond the 8-cell stage. Similar nuclear remodeling procedures were observed in oocytes reconstructed with mouse and bovine fibroblast cells. Foreign centrosomes during NT were introduced into embryos reconstructed with both fibroblast cell types. A number of housekeeping mouse genes (hsp70, bax, and glt-1) were abnormally expressed in embryos that had received nuclei from mouse fibroblast cells. However, development-related genes, such as Oct-4 and E-cad, were not expressed. The results collectively suggest that the bovine oocyte cytoplasm supports nuclear remodeling, but not reprogramming of mouse fibroblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号