首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa is the agent of opportunistic infections in immunocompromised individuals and chronic respiratory illnesses in cystic fibrosis patients. Pseudomonas aeruginosa utilizes a type III secretion system for injection of toxins into the host cell cytoplasm through a channel on the target membrane (the 'translocon'). Here, we have functionally and structurally characterized PopB and PopD, membrane proteins implicated in the formation of the P.aeruginosa translocon. PopB and PopD form soluble complexes with their common chaperone, PcrH, either as stable heterodimers or as metastable heterooligomers. Only oligomeric forms are able to bind to and disrupt cholesterol-rich membranes, which occurs within a pH range of 5-7 in the case of PopB/PcrH, and only at acidic pH for PcrH-free PopD. Electron microscopy reveals that upon membrane association PopB and PopD form 80 A wide rings which encircle 40 A wide cavities. Thus, formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems.  相似文献   

2.
The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the “translocators”) are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development.  相似文献   

3.
Faudry E  Job V  Dessen A  Attree I  Forge V 《The FEBS journal》2007,274(14):3601-3610
Type III secretion systems of Gram-negative pathogenic bacteria allow the injection of effector proteins into the cytosol of host eukaryotic cells. Crossing of the eukaryotic plasma membrane is facilitated by a translocon, an oligomeric structure made up of two bacterial proteins inserted into the host membrane during infection. In Pseudomonas aeruginosa, a major human opportunistic pathogen, these proteins are PopB and PopD. Their interactions with their common chaperone PcrH in the cytosol of the bacteria are essential for the proper function of the injection system. The interaction region between PopD and PcrH was identified using limited proteolysis, revealing that the putative PopD transmembrane fragment is buried within the PopD/PcrH complex. In addition, structural features of PopD and PcrH, either individually or within the binary complex, were characterized using spectroscopic methods and 1D NMR. Whereas PcrH possesses the characteristics of a folded protein, PopD is in a molten globule state either alone or in the PopD/PcrH complex. The molten globule state is known to enable the membrane insertion of translocation/pore-forming domains of bacterial toxins. Therefore, within the bacterial cytoplasm, PopD is preserved in a state that is favorable to secretion and insertion into cell membranes.  相似文献   

4.
Type III secretion systems rely on hydrophobic translocator proteins that form a pore in the host cell membrane to deliver effector proteins into targeted host cells. These translocator proteins are stabilized in the cytoplasm and targeted for export with the help of specific chaperone proteins. In Pseudomonas aeruginosa, the chaperone of the pore-forming translocator proteins is PcrH. Although all translocator chaperones dimerize, the location of the dimerization interface is in dispute. Moreover, it has been reported that interfering with dimerization interferes with chaperone function. However, binding of P. aeruginosa chaperone PcrH to its cognate secretion substrate, PopD, results in dissociation of the PcrH dimer in vitro, arguing that dimerization of PcrH is likely not important for substrate binding or targeting translocators for export. We demonstrate that PcrH dimerization occurs in vivo in P. aeruginosa and used a genetic screen to identify a dimerization mutant of PcrH. The mutant protein is fully functional in that it can both stabilize PopB and PopD in the cytoplasm and promote their export via the type III secretion system. The location of the mutation suggests that the dimerization interface of PcrH mirrors that of the Yersinia homolog SycD and not the dimerization interface that had previously been reported for PcrH based on crystallographic evidence. Finally, we present data that the dimerization mutant of PcrH is less stable than the wild-type protein in P. aeruginosa, suggesting that the function of dimerization is stabilization of PcrH in the absence of its cognate cargo.  相似文献   

5.
The TTSS encoding ??translocator operon?? of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an ??-helical model for PopB, PcrH and PopB?CPcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB?CPcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (Kd?~?0.37???M) of PopB for PcrH at pH 7.8, which reduces to ~0.68???M at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.  相似文献   

6.
Pseudomonas aeruginosa, a Gram‐negative pathogen uses a specialized set of Type III secretion system (T3SS) translocator proteins to establish virulence in the host cell. An understanding of the factors that govern translocation by the translocator protein–chaperone complex is thus of immense importance. In this work, experimental and computational techniques were used to probe into the structure of the major translocator protein PopB from P. aeruginosa and to identify the important regions involved in functioning of the translocator protein. This study reveals that the binding sites of the common chaperone PcrH, needed for maintenance of the translocator PopB within the bacterial cytoplasm, which are primarily localized within the N‐terminal domain. However, disordered and flexible residues located both at the N‐ and C‐terminal domains are also observed to be involved in association with the chaperone. This intrinsic disorderliness of the terminal domains is conserved for all the major T3SS translocator proteins and is functionally important to maintain the intrinsically disordered state of the translocators. Our experimental and computational analyses suggest that a “disorder‐to‐order” transition of PopB protein might take place upon PcrH binding. The long helical coiled‐coil part of PopB protein perhaps helps in pore formation while the flexible apical region is involved in chaperone interaction. Thus, our computational model of translocator protein PopB and its binding analyses provide crucial functional insights into the T3SS translocation mechanism. Proteins 2014; 82:3273–3285. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
One infection method widely used by many gram-negative bacteria involves a protein nanomachine called the Type Three Secretion System (T3SS). The T3SS enables the transportation of bacterial “toxins” via a proteinaceous channel that directly links the cytosol of the bacteria and host cell. The channel from the bacteria is completed by a translocon pore formed by two proteins named the major and minor translocators. Prior to pore formation, the translocator proteins are bound to a small chaperone within the bacterial cytoplasm. This interaction is crucial to effective secretion. Here we investigated the specificity of the binding interfaces of the translocator–chaperone complexes from Pseudomonas aeruginosa via the selection of peptide and protein libraries based on its chaperone PcrH. Five libraries encompassing PcrH’s N-terminal and central α-helices were panned, using ribosome display, against both the major (PopB) and minor (PopD) translocator. Both translocators were shown to significantly enrich a similar pattern of WT and non-WT sequences from the libraries. This highlighted key similarities/differences between the interactions of the major and minor translocators with their chaperone. Moreover, as the enriched non-WT sequences were specific to each translocator, it would suggest that PcrH can be adapted to bind each translocator individually. The ability to evolve such proteins indicates that these molecules may provide promising anti-bacterial candidates.  相似文献   

8.
Type III secretion systems are used by many animal and plant interacting bacteria to colonize their host. These systems are often composed of at least 40 genes, making their temporal and spatial regulation very complex. Some type III chaperones of the translocator class are important regulatory molecules, such as the LcrH chaperone of Yersinia pseudotuberculosis. In contrast, the highly homologous PcrH chaperone has no regulatory effect in native Pseudomonas aeruginosa or when produced in Yersinia. In this study, we used LcrH-PcrH chaperone hybrids to identify a discrete region in the N terminus of LcrH that is necessary for YscY binding and regulatory control of the Yersinia type III secretion machinery. PcrH was unable to bind YscY and the homologue Pcr4 of P. aeruginosa. YscY and Pcr4 were both essential for type III secretion and reciprocally bound to both substrates YscX of Yersinia and Pcr3 of P. aeruginosa. Still, Pcr4 was unable to complement a DeltayscY null mutant defective for type III secretion and yop-regulatory control in Yersinia, despite the ability of YscY to function in P. aeruginosa. Taken together, we conclude that the cross-talk between the LcrH and YscY components represents a strategic regulatory pathway specific to Yersinia type III secretion.  相似文献   

9.
The type III secretion system (T3SS) is a specialized apparatus evolved by Gram-negative bacteria to deliver effector proteins into host cells, thus facilitating the establishment of an infection. Effector translocation across the target cell plasma membrane is believed to occur via pores formed by at least two secreted translocator proteins, the functions of which are dependent upon customized class II T3SS chaperones. Recently, three internal tetratricopeptide repeats (TPRs) were identified in this class of chaperones. Here, defined mutagenesis of the class II chaperone PcrH of Pseudomonas aeruginosa revealed these TPRs to be essential for chaperone activity towards the translocator proteins PopB and PopD and subsequently for the translocation of exoenzymes into host cells.  相似文献   

10.
Pseudomonas aeruginosa type III secretion apparatus exports and translocates four exotoxins into the cytoplasm of the host cell. The translocation requires two hydrophobic bacterial proteins, PopB and PopD, that are found associated with host cell membranes following infection. In this work we examined the influence of host cell elements on exotoxin translocation efficiency. We developed a quantitative flow cytometry based assay of translocation that used protein fusions between either ExoS or ExoY and the ?-lactamase reporter enzyme. In parallel, association of translocon proteins with host plasma membranes was evaluated by immunodetection of PopB/D following sucrose gradient fractionation of membranes. A pro-myelocytic cell line (HL-60) and a pro-monocytic cell line (U937) were found resistant to toxin injection even though PopB/D associated with host cell plasma membranes. Differentiation of these cells to either macrophage- or neutrophil-like cell lines resulted in injection-sensitive phenotype without significantly changing the level of membrane-inserted translocon proteins. As previous in vitro studies have indicated that the lysis of liposomes by PopB and PopD requires both cholesterol and phosphatidyl-serine, we first examined the role of cholesterol in translocation efficiency. Treatment of sensitive HL-60 cells with methyl-?-cyclodextrine, a cholesterol-depleting agent, resulted in a diminished injection of ExoS-Bla. Moreover, the PopB translocator was found in the membrane fraction, obtained from sucrose-gradient purifications, containing the lipid-raft marker flotillin. Examination of components of signalling pathways influencing the toxin injection was further assayed through a pharmacological approach. A systematic detection of translocon proteins within host membranes showed that, in addition to membrane composition, some general signalling pathways involved in actin polymerization may be critical for the formation of a functional pore. In conclusion, we provide new insights in regulation of translocation process and suggest possible cross-talks between eukaryotic cell and the pathogen at the level of exotoxin translocation.  相似文献   

11.
The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication.  相似文献   

12.
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.  相似文献   

13.
To establish an infection, Yersinia pseudotuberculosis utilizes a plasmid-encoded type III translocon to microinject several anti-host Yop effectors into the cytosol of target eukaryotic cells. YopD has been implicated in several key steps during Yop effector translocation, including maintenance of yop regulatory control and pore formation in the target cell membrane through which effectors traverse. These functions are mediated, in part, by an interaction with the cognate chaperone, LcrH. To gain insight into the complex molecular mechanisms of YopD function, we performed a systematic mutagenesis study to search for discrete functional domains. We highlighted amino acids beyond the first three N-terminal residues that are dispensable for YopD secretion and confirmed that an interaction between YopD and LcrH is essential for maintenance of yop regulatory control. In addition, discrete domains within YopD that are essential for both pore formation and translocation of Yop effectors were identified. Significantly, other domains were found to be important for effector microinjection but not for pore formation. Therefore, YopD is clearly essential for several discrete steps during efficient Yop effector translocation. Recognition of this modular YopD domain structure provides important insights into the function of YopD.  相似文献   

14.
The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject effector proteins into the host cell cytoplasm. Efficient secretion of several effector proteins depends on the cytoplasmic global T3S chaperone HpaB. In this study, we show that HpaB interacts with the virulence factor HpaA, which is secreted by the T3S system and translocated into the plant cell. HpaA promotes secretion of pilus, translocon and effector proteins and therefore appears to be an important control protein of the T3S system. Protein-protein interaction studies and the analysis of HpaA deletion derivatives revealed that the C-terminal protein region, which contains a HpaB binding site, is crucial for the contribution of HpaA to T3S. Secretion of pilus and translocon proteins is not affected when HpaA is expressed as an N-terminal deletion derivative that lacks the secretion and translocation signal. Our data suggest that binding of HpaA to HpaB within the bacterial cell favours secretion of extracellular components of the secretion apparatus. Secretion of HpaA presumably liberates HpaB and thus promotes effector protein secretion after assembly of the T3S apparatus.  相似文献   

15.
In the type III secretion system (T3SS) of Aeromonas hydrophila, AcrH acts as a chaperone for translocators AopB and AopD. AcrH forms a stable 1:1 monomeric complex with AopD, whereas the 1:1 AcrH‐AopB complex exists mainly as a metastable oligomeric form and only in minor amounts as a stable monomeric form. Limited protease digestion shows that these complexes contain highly exposed regions, thus allowing mapping of intact functional chaperone binding regions of AopB and AopD. AopD uses the transmembrane domain (DF1, residues 16–147) and the C‐terminal amphipathic helical domain (DF2, residues 242–296) whereas AopB uses a discrete region containing the transmembrane domain and the putative N‐terminal coiled coil domain (BF1, residues 33–264). Oligomerization of the AcrH‐AopB complex is mainly through the C‐terminal coiled coil domain of AopB, which is dispensable for chaperone binding. The three proteins, AcrH, AopB, and AopD, can be coexpressed to form an oligomeric and metastable complex. These three proteins are also oligomerized mainly through the C‐terminal domain of AopB. Formation of such an oligomeric and metastable complex may be important for the proper formation of translocon of correct topology and stoichiometry on the host membrane.  相似文献   

16.
Yersinia adhering at the surface of eukaryotic cells secrete a set of proteins called Yops. This secretion which occurs via a type III secretion pathway is immediately followed by the injection of some Yops into the cytosol of eukaryotic cells. Translocation of YopE and YopH across the eukaryotic cell membranes requires the presence of the translocators YopB and YopD. YopE and YopH are modular proteins composed of an N-terminal secretion signal, an internalization domain, and an effector domain. Secretion of YopE and YopH requires the presence of the specific cytosolic chaperones SycE and SycH, respectively. In this work, we have mapped the regions of YopE and YopH that are involved in binding of their cognate chaperone. There is only one Syc-binding domain in YopE (residues 15–50) and YopH (residues 20–70). This domain is localized immediately after the secretion signal and it corresponds to the internalization domain. Removal of this bifunctional domain did not affect secretion of YopE and YopH and even suppressed the need for the chaperone in the secretion process. Thus SycE and SycH are not secretion pilots. Instead, we propose that they prevent intrabacterial interaction of YopE and YopH with proteins involved in translocation of these Yops across eukaryotic cell membranes.  相似文献   

17.
Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to inject effector proteins directly into the cytosol of mammalian cells where they interfere with signal transduction pathways that regulate actin cytoskeleton dynamics and inflammation, thereby enabling the bacterium to avoid engulfment and destruction by macrophages. Type III secretion normally does not occur in the absence of close contact with eukaryotic cells. Negative regulation is mediated in part by a multiprotein complex that has been proposed to act as a physical impediment to type III secretion by blocking the entrance to the secretion apparatus prior to contact with mammalian cells. This complex is composed of YopN, its heterodimeric secretion chaperone SycN-YscB, and TyeA. Here, we report two crystal structures of YopN in complex with its heterodimeric secretion chaperone SycN-YscB and the co-regulatory protein TyeA, respectively. By merging these two overlapping structures, it was possible to construct a credible theoretical model of the YopN-SycN-YscB-TyeA complex. The modeled assembly features the secretion signaling elements of YopN at one end of an elongated structure and the secretion regulating TyeA binding site at the other. A patch of highly conserved residues on the surface of the C-terminal alpha-helix of TyeA may mediate its interaction with structural components of the secretion apparatus. Conserved arginine residues that reside inside a prominent cavity at the dimer interface of SycN-YscB were mutated in order to investigate whether they play a role in targeting the YopN-chaperone complex to the type III secretion apparatus. One of the mutants exhibited a phenotype that is consistent with this hypothesis.  相似文献   

18.
The type III secretion system (T3SS) is a complex nanomachine of many pathogenic Gram-negative bacteria. It forms a proteinaceous channel that is inserted into the host eukaryotic cell membrane for injection of bacterial proteins that manipulate host cell signaling. However, few studies have focused on the effector-independent functions of the T3SS. Using a murine model of acute lung infection with Pseudomonas aeruginosa, an important human opportunistic pathogen, we compared the pathogenicity of mutant bacteria that lack all of the known effector toxins ( ΔSTY), with mutant bacteria that also lack the major translocator protein PopB (ΔSTY/ΔPopB) and so cannot form a functional T3SS channel in the host cell membrane. Mortality was higher among mice challenged with ΔSTY compared to mice challenged with ΔSTY/ΔPopB mutant bacteria. In addition, mice infected with ΔSTY showed decreased bacterial clearance from the lungs compared to those infected with ΔSTY/ΔPopB. Infection was in both cases associated with substantial killing of lung infiltrating macrophages. However, macrophages from ΔSTY-infected mice died by pro-inflammatory necrosis characterized by membrane permeabilization and caspase-1 mediated IL-1β production, whereas macrophages from ΔSTY/ΔPopB infected mice died by apoptosis, which is characterized by annexin V positive staining of the cell membrane and caspase-3 activation. This was confirmed in macrophages infected in vitro. These results demonstrate a T3SS effector toxin independent role for the T3SS, in particular the T3SS translocator protein PopB, in the pathogenicity of P. aeruginosa during acute lung infection.  相似文献   

19.
The type III secretion system (TTSS) mediates the specific translocation of bacterial proteins into the cytoplasm of eukaryotic cells, a process essential for the virulence of many Gram-negative pathogens. The enteropathogenic Escherichia coli TTSS protein EspA forms a hollow extracellular filament believed to be a molecular conduit for type III protein translocation. Structural analysis of EspA has been hampered by its polymeric nature. We show that EspA alone is sufficient to form filamentous structures in the absence of other pathogenicity island-encoded proteins. CesA is the recently proposed chaperone of EspA, and we demonstrate that CesA traps EspA in a monomeric state and inhibits its polymerization. Crystallographic analysis of the heterodimeric CesA-EspA complex at a resolution of 2.8 A reveals that EspA contains two long a-helices, which are involved in extensive coiled-coil interactions with CesA.  相似文献   

20.
Pathogenic Yersinia species inject virulence proteins, known as Yops, into the cytosol of eukaryotic cells. The injection of Yops is mediated via a type III secretion system. Previous studies have suggested that YopE is targeted for secretion by two signals. One is mediated by its cognate chaperone YerA, whereas the other consists of either the 5' end of yopE mRNA or the N-terminus of YopE. In order to characterize the YopE N-terminal/5' mRNA secretion signal, the first 11 codons of yopE were systematically mutagenized. Frameshift mutations, which completely alter the amino acid sequence of residues 2-11 but leave the mRNA sequence essentially intact, drastically reduce the secretion of YopE in a yerA mutant. In contrast, a mutation that alters the yopE mRNA sequence, while leaving the amino acid sequence of YopE unchanged, does not impair the secretion of YopE. Therefore, the N-terminus of YopE, and not the 5' end of yopE mRNA, serves as a targeting signal for type III secretion. In addition, the chaperone YerA can target YopE for type III secretion in the absence of a functional N-terminal signal. Mutational analysis of the YopE N-terminus revealed that a synthetic amphipathic sequence of eight residues is sufficient to serve as a targeting signal. YopE is also secreted rapidly upon a shift to secretion-permissive conditions. This 'rapid secretion' of YopE does not require de novo protein synthesis and is dependent upon YerA. Furthermore, this burst of YopE secretion can induce a cytotoxic response in infected HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号