首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensin-converting enzyme (ACE) inhibitors ameliorate the progression of renal disease. In combination with vitamin D receptor activators, they provide additional benefits. In the present study, uremic (U) rats were treated as follows: U+vehicle (UC), U+enalapril (UE; 25 mg/l in drinking water), U+paricalcitol (UP; 0.8 μg/kg ip, 3 × wk), or U+enalapril+paricalcitol (UEP). Despite hypertension in UP rats, proteinuria decreased by 32% vs. UC rats. Enalapril alone, or in combination with paricalcitol, further decreased proteinuria (≈70%). Glomerulosclerosis and interstitial infiltration increased in UC rats. Paricalcitol and enalapril inhibited this. The increase in cardiac atrial natriuretic peptide (ANP) seen in UC rats was significantly decreased by paricalcitol. Enalapril produced a more dramatic reduction in ANP. Renal oxidative stress plays a critical role in inflammation and progression of sclerosis. The marked increase in p22(phox), a subunit of NADPH oxidase, and decrease in endothelial nitric oxide synthase were inhibited in all treated groups. Cotreatment with both compounds inhibited the uremia-induced increase in proinflammatory inducible nitric oxide synthase (iNOS) and glutathione peroxidase activity better than either compound alone. Glutathione reductase was also increased in UE and UP rats vs. UC. Kidney 4-hydroxynonenal was significantly increased in the UC group compared with the normal group. Combined treatment with both compounds significantly blunted this increase, P < 0.05, while either compound alone had no effect. Additionally, the expression of Mn-SOD was increased and CuZn-SOD decreased by uremia. This was ameliorated in all treatment groups. Cotreatment with enalapril and paricalcitol had an additive effect in increasing CuZn-SOD expression. In conclusion, like enalapril, paricalcitol alone can improve proteinuria, glomerulosclerosis, and interstitial infiltration and reduce renal oxidative stress. The effects of paricalcitol may be amplified when an ACE inhibitor is added since cotreatment with both compounds seems to have an additive effect on ameliorating uremia-induced changes in iNOS and CuZn-SOD expression, peroxidase activity, and renal histomorphometry.  相似文献   

2.
Previous hypertension studies have shown that low levels of vitamin D are linked to elevated renin–angiotensin system. The heat shock protein 70 regulates signaling pathways for cellular oxidative stress responses. Hsp70 has been shown to protect against angiotensin II-induced hypertension and exert a cytoprotective effect. Here, we wanted to evaluate whether the vitamin D receptor (VDR) associated with Hsp70/AT1 expression may be involved in the mechanism by which paricalcitol provides renal protection in spontaneously hypertensive rats (SHRs). One-month-old female SHRs were treated for 4 months with vehicle, paricalcitol, enalapril, or a combination of both paricalcitol and enalapril. The following were determined: blood pressure; biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; and VDR, AT1 receptor, and Hsp70 expression in the renal cortex. Blood pressure was markedly reduced by enalapril or the combination but not by paricalcitol alone. However, VDR activation, enalapril or combination, prevented fibrosis, the number of TUNEL-positive apoptotic cells, mitochondrial damage, and NADPH oxidase activity in SHRs. Additionally, high AT1 receptor expression, like low Hsp70 expression (immunohistochemical/immunofluorescence studies), was reversed in the renal cortices of paricalcitol- and/or enalapril-treated animals (SHRs), and these changes were most marked in the combination therapy group. Finally, all of the recovery parameters were consistent with an improvement in VDR expression. Data suggest that Hsp70/AT1 modulated by VDR is involved in the mechanism by which paricalcitol provides renal protection in SHRs. We propose that low AT1 expression through VDR induction could be a consequence of the heat shock response Hsp70-mediated cell protection.  相似文献   

3.
Angiotensin‐converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)‐induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ‐diabetic rats, and STZ‐diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na+/K+‐ATPase activity, oxidative stress, and serum transforming growth factor‐β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes‐induced changes in ACE expression and Na+/K+‐ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:378‐387, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21500  相似文献   

4.
We investigated whether cosupplementation with synthetic tetra-tert-butyl bisphenol (BP) and vitamin C (Vit C) ameliorated oxidative stress and acute kidney injury (AKI) in an animal model of acute rhabdomyolysis (RM). Rats were divided into groups: Sham and Control (normal chow), and BP (receiving 0.12% w/w BP in the diet; 4 weeks) with or without Vit C (100mg/kg ascorbate in PBS ip at 72, 48, and 24h before RM induction). All animals (except the Sham) were treated with 50% v/v glycerol/PBS (6 mL/kg injected into the hind leg) to induce RM. After 24h, urine, plasma, kidneys, and aortae were harvested. Lipid oxidation (assessed as cholesteryl ester hydroperoxides and hydroxides and F(2)-isoprostanes accumulation) increased in the kidney and plasma and this was coupled with decreased aortic levels of cyclic guanylylmonophosphate (cGMP). In renal tissues, RM stimulated glutathione peroxidase (GPx)-4, superoxide dismutase (SOD)-1/2 and nuclear factor kappa-beta (NFκβ) gene expression and promoted AKI as judged by formation of tubular casts, damaged epithelia, and increased urinary levels of total protein, kidney-injury molecule-1 (KIM-1), and clusterin. Supplementation with BP±Vit C inhibited the two indices of lipid oxidation, down-regulated GPx-4, SOD1/2, and NF-κβ gene responses and restored aortic cGMP, yet renal dysfunction and altered kidney morphology persisted. By contrast, supplementation with Vit C alone inhibited oxidative stress and diminished cast formation and proteinuria, while other plasma and urinary markers of AKI remained elevated. These data indicate that lipid- and water-soluble antioxidants may differ in terms of their therapeutic impact on RM-induced renal dysfunction.  相似文献   

5.

Background

Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1 +/+; WT) and homozygous-mutant (Npc1 −/−; NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice.

Methodology/Principal Findings

We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice.

Conclusions/Significance

In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.  相似文献   

6.
Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation.  相似文献   

7.
Patients with nonalcoholic fatty liver disease may subsequently develop nonalcoholic steatohepatitis after suffering from a second insult, such as oxidative stress. Aim of this study was to investigate the pathogenesis of the liver injury caused when lipids accumulate under conditions of intrinsic oxidative stress using mice that are deficient in superoxide dismutase 1 (SOD1) and the leptin receptor (Lepr). We established Sod1−/−::Leprdb/db mice and carried out analyses of four groups of genetically modified mice, namely, wild type, Sod1−/−, Leprdb/db and Sod1−/−::Leprdb/db mice. Mice with defects in the SOD1 or Lepr gene are vulnerable to developing fatty livers, even when fed a normal diet. Feeding a high-fat diet (HFD) caused an increase in the number of lipid droplets in the liver to different extents in each genotypic mouse. an HFD caused the accelerated death of db/db mice, but contradictory to our expectations, the death rates for the Sod1-deficient mice were decreased by feeding HFD. Consistent with the improved probability of survival, liver damage was significantly ameliorated by feeding an HFD compared to a normal diet in the mice with an Sod1-deficient background. Oxidative stress markers, hyperoxidized peroxiredoxin and lipid peroxidation products, were decreased somewhat in Sod1−/− mice by feeding HFD. We conclude that lipids reacted with reactive oxygen species and eliminated them in the livers of the young mice, which resulted in the alleviation of oxidative stress, but in advanced age oxidized products accumulated, leading to the aggravation of the liver injury and an increase in fatality rate.  相似文献   

8.
Excessive salt intake is known to preferentially increase blood pressure (BP) and promote kidney damage in young, salt-sensitive hypertensive human and animal models. We have suggested that mineralocorticoid receptor (MR) activation plays a major role in kidney injury in young rats. BP and urinary protein were compared in young (3-wk-old) and adult (10-wk-old) uninephrectomized (UNx) Sprague-Dawley rats fed a high (8.0%)-salt diet for 4 wk. The effects of the MR blocker eplerenone on BP and renal injury were examined in the high-salt diet-fed young UNx rats. Renal expression of renin-angiotensin-aldosterone (RAA) system components and of inflammatory and oxidative stress markers was also measured. The effects of the angiotensin receptor blocker olmesartan with or without low-dose aldosterone infusion, the aldosterone synthase inhibitor FAD286, and the antioxidant tempol were also studied. Excessive salt intake induced greater hypertension and proteinuria in young rats than in adult rats. The kidneys of young salt-loaded rats showed marked histological injury, overexpression of RAA system components, and an increase in inflammatory and oxidative stress markers. These changes were markedly ameliorated by eplerenone treatment. Olmesartan also ameliorated salt-induced renal injury but failed to do so when combined with low-dose aldosterone infusion. FAD286 and tempol also markedly reduced urinary protein. UNx rats exposed to excessive salt at a young age showed severe hypertension and renal injury, likely primarily due to MR activation and secondarily due to angiotensin receptor activation, which may be mediated by inflammation and oxidative stress.  相似文献   

9.
The study aim was to investigate the interaction of physical conditioning and chronic ethanol ingestion on blood pressure (BP), heart rate (HR), nitric oxide (NO) and oxidants/antioxidants balance in the plasma of rats. Male Fisher rats were divided into four groups of seven animals each and treated as follows: (1) Control (5% sucrose, orally) daily for 12 weeks; (2) ethanol (4 g kg−1, orally) daily for 12 weeks; (3) exercise training on treadmill plus sucrose daily for 12 weeks and (4) exercise training on treadmill followed by ethanol (4 g kg−1, orally) daily for 12 weeks. The body weight, BP and HR were recorded every week. The animals were sacrificed under ether anesthesia after 12 weeks, blood collected in heparinzed vials, plasma isolated and analyzed. The results show that exercise training significantly lowered the weight gain 6–12 weeks in ethanol treated rats compared to ethanol alone or control rats. The mean arterial BP was significantly elevated 6–12 weeks after ethanol ingestion without significant alterations in HR. Exercise training lowered the BP close to the normal control values in ethanol fed rats. Ethanol significantly decreased the plasma NO levels, reduced to oxidized glutathione ratio (GSH/GSSG) and antioxidant enzymes-superoxide dismutase (CuZn-SOD, and Mn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities while plasma NADPH oxidase activity and malondialdehyde (MDA) levels were significantly elevated compared to control. Exercise training significantly restored the depletion of plasma NO levels, GSH/GSSG ratio, and antioxidant enzyme activities and normalized the MDA levels and NADPH oxidase activity in the plasma of ethanol treated rats. The study concluded that physical conditioning attenuates the chronic ethanol-induced hypertension by augmenting the NO bioavailability and reducing the oxidative stress response in the plasma of rats.  相似文献   

10.

Background

Neuroinflammation with activation of microglia and production of proinflammatory cytokines in the brain plays an active role in epileptic disorders. Brain oxidative stress has also been implicated in the pathogenesis of epilepsy. Damage in the hippocampus is associated with temporal lobe epilepsy, a common form of epilepsy in human. Peripheral inflammation may exacerbate neuroinflammation and brain oxidative stress. This study examined the impact of peripheral inflammation on seizure susceptibility and the involvement of neuroinflammation and oxidative stress in the hippocampus.

Results

In male, adult Sprague-Dawley rats, peripheral inflammation was induced by the infusion of Escherichia coli lipopolysaccharide (LPS, 2.5 mg/kg/day) into the peritoneal cavity for 7 days via an osmotic minipump. Pharmacological agents were delivered via intracerebroventricular (i.c.v.) infusion with an osmotic minipump. The level of cytokine in plasma or hippocampus was analyzed by ELISA. Redox-related protein expression in hippocampus was evaluated by Western blot. Seizure susceptibility was tested by intraperitoneal (i.p.)  injection of kainic acid (KA, 10 mg/kg). We found that i.p. infusion of LPS for 7 days induced peripheral inflammation characterized by the increases in plasma levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). This is associated with a significant increase in number of the activated microglia (Iba-1+ cells), enhanced production of proinflammatory cytokines (including IL-1β, IL-6 and TNF-α), and tissue oxidative stress (upregulations of the NADPH oxidase subunits) in the hippocampus. These cellular and molecular responses to peripheral inflammation were notably blunted by i.c.v. infusion of a cycloxygenase-2 inhibitor, NS398 (5 μg/μl/h). The i.c.v. infusion of tempol (2.5 μg/μl/h), a reactive oxygen species scavenger, protected the hippocampus from oxidative damage with no apparent effect on microglia activation or cytokine production after peripheral inflammation. In the KA-induced seizure model, i.c.v. infusion of both NS398 and tempol ameliorated the increase in seizure susceptibility in animals succumbed to the LPS-induced peripheral inflammation.

Conclusions

Together these results indicated that LPS-induced peripheral inflammation evoked neuroinflammation and the subsequent oxidative stress in the hippocampus, resulting in the increase in KA-induced seizure susceptibility. Moreover, protection from neuroinflammation and oxidative stress in the hippocampus exerted beneficial effect on seizure susceptibility following peripheral inflammation.  相似文献   

11.
Previously we have shown that kallikreins (klks) play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs) as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1) gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1. 129/svj mice subjected to anti-GBM induced nephritis were transplanted with 106 hKLK1-MSCs and hKLK1 expression was confirmed in the kidneys. Compared with vector-MSCs injected mice, the hKLK1-MSCs treated mice showed significantly reduced proteinuria, blood urea nitrogen (BUN) and ameliorated renal pathology. Using the same strategy, we treated lupus-prone B6.Sle1.Sle3 bicongenic mice with hKLK1-MSCs and demonstrated that hKLK1-MSCs delivery also attenuated lupus nephritis. Mechanistically, hKLK1-MSCs reduced macrophage and T-lymphocyte infiltration into the kidney by suppressing the expression of inflammation cytokines. Moreover, hKLK1 transduced MSCs were more resistant to oxidative stress-induced apoptosis. These findings advance genetically modified MSCs as potential gene delivery tools for targeting therapeutic agents to the kidneys in order to modulate inflammation and oxidative stress in lupus nephritis.  相似文献   

12.
The NLRP3 inflammasome is activated by mitochondrial damage and contributes to kidney fibrosis. However, it is unknown whether PGC-1α, a key mitochondrial biogenesis regulator, modulates NLRP3 inflammasome in kidney injury. Primary renal tubular epithelial cells (RTECs) were isolated from C57BL/6 mice. The NLRP3 inflammasome, mitochondrial dynamics and morphology, oxidative stress, and cell injury markers were examined in RTECs treated by TGF-β1 with or without Ppargc1a plasmid, PGC-1α activator (metformin), and siPGC-1α. In vivo, adenine-fed and unilateral ureteral obstruction (UUO) mice were treated with metformin. In vitro, TGF-β1 treatment to RTECs suppressed the expressions of PGC-1α and mitochondrial dynamic-related genes. The NLRP3 inflammasome was also activated and the expression of fibrotic and cell injury markers was increased. PGC-1α induction with the plasmid and metformin improved mitochondrial dynamics and morphology and attenuated the NLRP3 inflammasome and cell injury. The opposite changes were observed by siPGC-1α. The oxidative stress levels, which are inducers of the NLRP3 inflammasome, were increased and the expression of TNFAIP3, a negative regulator of NLRP3 inflammasome regulated by PGC-1α, was decreased by TGF-β1 and siPGC-1α. However, PGC-1α restoration reversed these alterations. In vivo, adenine-fed and UUO mice models showed suppression of PGC-1α and TNFAIP3 and dysregulated mitochondrial dynamics. Moreover, the activation of oxidative stress and NLRP3 inflammasome, and kidney fibrosis were increased in these mice. However, these changes were significantly reversed by metformin. This study demonstrated that kidney injury was ameliorated by PGC-1α-induced inactivation of the NLRP3 inflammasome via modulation of mitochondrial viability and dynamics.Subject terms: Mechanisms of disease, Experimental models of disease  相似文献   

13.
Exposure to chronic psychosocial stress is a risk factor for various pulmonary diseases. In view of the essential role of dipeptidyl peptidase 4 (DPP4) in animal and human lung pathobiology, we investigated the role of DPP4 in stress-related lung injury in mice. Eight-week-old male mice were randomly divided into a non-stress group and a 2-week immobilization stress group. Non-stress control mice were left undisturbed. The mice subjected to immobilized stress were randomly assigned to the vehicle or the DPP4 inhibitor anagliptin for 2 weeks. Chronic stress reduced subcutaneous and inguinal adipose volumes and increased blood DPP4 levels. The stressed mice showed increased levels in the lungs of genes and/or proteins related to oxidative stress (p67phox, p47phox, p22phox and gp91phox), inflammation (monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), apoptosis (caspase-3, -8, -9), senescence (p16INK4A, p21, and p53) and proteolysis (matrix metalloproteinase-2 to -9, cathepsin S/K, and tissue inhibitor of matrix metalloproteinase-1 and -2), and reduced levels of eNOS, Sirt1, and Bcl-2 proteins; and these effects were reversed by genetic and pharmacological inhibitions of DPP4. We then exposed human umbilical vein endothelial cells in vitro to hydrogen peroxide; anagliptin treatment was also observed to mitigate oxidative and inflammatory molecules in this setting. Anagliptin can improve lung injury in stressed mice, possibly by mitigating vascular inflammation, oxidative stress production, and proteolysis. DPP4 may become a new therapeutic target for chronic psychological stress-related lung disease in humans and animals.  相似文献   

14.

Background

The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI).

Methods

Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells.

Results

Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells.

Conclusion

These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.  相似文献   

15.
Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea, has antioxidant and anti-inflammatory effects. However, it is unknown whether or not EGCG is effective in treating CIN. Our present study found that intravenous administration of EGCG, either before or just after the establishment of CIN, had a protective effect, determined by normalization of serum creatinine and blood urea nitrogen levels, improvement in renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxidative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN; treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation (myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-mediated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflammasome, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG, via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and inflammation.  相似文献   

16.
17.
Melanocyte-stimulating hormones, α-, β- and γ-MSH, regulate important physiological functions including energy homeostasis, inflammation and sodium metabolism. Previous studies have shown that α-MSH increases sodium excretion and promotes vascular function in rodents, but it is unexplored whether these characteristics of α-MSH could translate into therapeutic benefits in the treatment of hypertension. Therefore, we first assessed the diuretic and natriuretic properties of the stable α-MSH analogue [Nle4, D-Phe7]-α-MSH (NDP-α-MSH) and investigated whether it has protective effects in deoxycorticosterone acetate (DOCA)-salt hypertensive mice. Adult male C57Bl/6N mice were subjected to DOCA-salt treatment and randomized to receive intraperitoneal injections of either saline as vehicle or NDP-α-MSH (0.3 mg/kg/day for 14 days) starting 7 days after the DOCA-salt treatment. Systemic hemodynamics, serum and urine electrolytes, and oxidative stress markers were assessed in control sham-operated and DOCA-salt mice. NDP-α-MSH elicited marked diuretic and natriuretic responses that were reversible with the MC3/4 receptor antagonist SHU9119. Chronic NDP-α-MSH treatment attenuated blood pressure elevation in DOCA-salt mice without affecting the blood pressure of normotensive control animals. Owing to the enhanced sodium excretion, NDP-α-MSH-treated mice were protected from DOCA-salt-induced hypernatremia. DOCA-salt treatment mildly increased oxidative stress at the tissue level, but NDP-α-MSH had no significant effects on the oxidative stress markers. In conclusion, treatment with NDP-α-MSH increases urinary sodium excretion and protects against DOCA-salt-induced hypertension. These findings point to the potential future use of α-MSH analogues in the treatment of hypertension.  相似文献   

18.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   

19.
Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid–Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-β1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and oxidative/nitrative stress were suppressed in doxorubicin nephropathy in fibrosis-resistant Rowett black hooded rats underlying the importance of these pathomechanisms in the progression of renal fibrosis initiated by glomerular podocyte damage.  相似文献   

20.
This study was designed to examine if diphenyl diselenide (PhSe)2, an organoselenium compound, attenuates oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Swiss mice were pre‐treated with (PhSe)2 (5 mg kg‐1 day‐1) for 7 days. At the 7th day, the animals were submitted to acute physical exercise which consisted of continuous swimming for 20 min. The animals were euthanized 1 and 24 h after the exercise test. The levels of thiobarbituric acid reactive species (TBARS), non‐protein thiols (NPSH) and ascorbic acid and the activity of catalase (CAT) were measured in the lungs and skeletal muscle of mice. Glycogen content was determined in the skeletal muscle of mice. Parameters in plasma (urea and creatinine) were determined. The results demonstrated an increase in TBARS levels induced by acute physical exercise in the skeletal muscle and lungs of mice. Animals submitted to exercise showed an increase in non‐enzymatic antioxidant defenses (NPSH and ascorbic acid) in the skeletal muscle. In lungs of mice, activity of CAT was increased. (PhSe)2 protected against the increase in TBARS levels and ameliorated antioxidant defenses in the skeletal muscle and lungs of mice submitted to physical exercise. These results indicate that acute physical exercise caused a tissue‐specific oxidative stress in the skeletal muscle and lungs of mice. (PhSe)2 protected against oxidative damage induced by acute physical exercise in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号