首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
Hybrid models for gene expression combine stochastic and deterministic representations of the underlying biophysical mechanisms. According to one of the simplest hybrid formalisms, protein molecules are produced in randomly occurring bursts of a randomly distributed size while they are degraded deterministically. Here, we use this particular formalism to study two key regulatory motifs—the autoregulation loop and the toggle switch. The distribution of burst times is determined and used as a basis for the development of exact simulation algorithms for gene expression dynamics. For the autoregulation loop, the simulations are compared to an analytic solution of a master equation. Simulations of the toggle switch reveal a number of qualitatively distinct scenarios with implications for the modelling of cell-fate selection.  相似文献   

4.
Data on gene expression in the development of the root in Arabidopsis thaliana were used to test for expression profile differences among multi-gene families and to examine the extent to which expression differences accompanied coding sequences divergence within families. Significant differences among families were observed on two principal axes, accounting for over 80% of the variance in the expression data. The number of synonymous nucleotide substitutions per synonymous site (dS) and the number of nonsynonymous nucleotide substitutions per nonsynonymous site (dN) were estimated between the members of two-member families (N=428) and between phylogenetically independent sister pairs (N=190) of sequences within larger families. Ribosomal proteins and a few other proteins were exceptional in showing highly divergent expression patterns in spite of very low levels of amino acid sequence divergence, as indicated by the low dN relative to dS. However, the majority of gene duplicates showed relatively high levels of amino acid sequence divergence without appreciable change in expression pattern in the cell types analyzed. Reviewing Editor:Dr. Manyuan Long  相似文献   

5.
The yeast α-1,3-mannosyltransferase (Mnn1p) is localized to the Golgi by independent transmembrane and lumenal domain signals. The lumenal domain is localized to the Golgi complex when expressed as a soluble form (Mnn1-s) by exchange of its transmembrane domain for a cleavable signal sequence (Graham, T. R., and V. A. Krasnov. 1995. Mol. Biol. Cell. 6:809–824). Mutants that failed to retain the lumenal domain in the Golgi complex, called lumenal domain retention (ldr) mutants, were isolated by screening mutagenized yeast colonies for those that secreted Mnn1-s. Two genes were identified by this screen, HOG1, a gene encoding a mitogen-activated protein kinase (MAPK) that functions in the high osmolarity glycerol (HOG) pathway, and LDR1. We have found that basal signaling through the HOG pathway is required to localize Mnn1-s to the Golgi in standard osmotic conditions. Mutations in HOG1 and LDR1 also perturb localization of intact Mnn1p, resulting in its loss from early Golgi compartments and a concomitant increase of Mnn1p in later Golgi compartments.  相似文献   

6.
7.
Leslie P. Kozak 《Genetics》1985,110(1):123-143
The cerebellum of BALB/cJ mice has approximately 2.5 times as much glycerol-3-phosphate dehydrogenase (GPDH) as that of C57BL/6J mice. This difference in enzyme levels, which positively correlates with similar differences in the levels of hybridizable GPDH mRNA, is controlled by at least two unlinked regulatory loci and the structural gene, Gdc-1, located on chromosome 15. These regulatory loci, which act predominantly during the second and third weeks of postnatal cerebellar development and differentiation, have been separated from each other in the CXB recombinant inbred strains of mice. One regulatory locus, Gdcr-1, although unlinked to the structural gene, has an allele in BALB/c mice that preferentially enhances expression of the BALB/c structural allele at Gdc-1. The other locus, Gdcr-2, which may or may not be single, enhances GPDH expression at Gdc-1 irrespective of the allele present, as is commonly observed for loci acting from a distance. Measurements of GPDH mRNA in the recombinant inbred mice suggest that these regulatory genes act by modulating mRNA levels. Accordingly, the regulation of GPDH expression in the cerebellum of mice depends on a complex interaction of unlinked regulatory elements with regulatory elements near the structural gene. Furthermore, since the Gdc-1 locus is expressed in virtually every tissue of the mouse except blood and since the observed genetic variation is restricted to the cerebellum, it is likely that other tissues will have their own distinctive genetic mechanisms for modulating Gdc-1 expression.  相似文献   

8.
9.
Bitter taste reception is expected to be associated with dietary selection and to prevent animals from ingesting potentially harmful compounds. To investigate the genetic basis of bitter taste reception, we reconfirmed the bitter taste receptor (T2R) genes from cow (herbivore) and dog (carnivore) genome sequences and identified the T2R repertoire from the draft genome of the bat (insectivore) for the first time using an automatic data-mining method. We detected 28 bitter receptor genes from the bat genome, including 9 intact genes, 8 partial but putative functional genes, and 9 pseudogenes. In the phylogenetic analysis, most of the T2R genes from the three species intermingle across the tree, suggesting that some are conserved among mammals with different dietary preferences. Furthermore, one clade of bat-specific genes was detected, possibly implying that the insectivorous mammal could recognize some species-specific bitter tastants. Evolutionary analysis shows strong positive selection was imposed on this bat-specific cluster, indicating that positive selection drives the functional divergence and specialization of the bat bitter taste receptors to adapt diets to the external environment.  相似文献   

10.
In rodents, the Otx2 gene is expressed in the diencephalon, mesencephalon, and cerebellum and is crucial for the development of these brain regions. Together with Otx1, Otx2 is known to cooperate with other genes to develop the caudal forebrain and, further, Otx1 is also involved in differentiation of young neurons of the deeper cortical layers. We have studied the spatial and temporal expression of the two homeobox genes OTX2 and OTX1 in human fetal brains from 7 to 14 weeks postconception by in situ hybridization and immunohistochemistry. OTX2 was expressed in the diencephalon, mesencephalon, and choroid plexus, with a minor expression in the basal telencephalon. The expression of OTX2 in the hippocampal anlage was strong, with no expression in the adjacent neocortex. Contrarily, the OTX1 expression was predominantly located in the proliferative zones of the neocortex. At later stages, the OTX2 protein was found in the subcommissural organ, pineal gland, and cerebellum. The early expression of OTX2 and OTX1 in proliferative cell layers of the human fetal brain supports the concept that these homeobox genes are important in neuronal cell development and differentiation: OTX1 primarily in the neocortex, and OTX2 in the archicortex, diencephalon, rostral brain stem, and cerebellum. (J Histochem Cytochem 58:669–678, 2010)  相似文献   

11.
12.
In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation—MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.  相似文献   

13.
14.
Homeobox Genes in the Developing Mouse Brain   总被引:3,自引:0,他引:3  
Abstract: Any list of past and recent findings on vertebrate brain prenatal development would have to include the fundamental roles of homeobox genes, the genes encoding the nuclear regulatory homeodomain proteins. The discovery of homeobox genes and their involvement as master regulatory elements in programing the development of an embryo into a complete adult organism has provided a key to our understanding of ontogenesis. Also, the correlation of mouse developmental mutants and their corresponding human syndromes with mutations in homeobox genes has provided further evidence for the fundamental role of homeobox genes during the vertebrate brain embryonic development. Here, we review the expression patterns and the phenotypes of gene mutations that implicate a large repertoire of mouse homeobox genes in the specification of neuronal functions during brain embryogenesis.  相似文献   

15.
16.
Precise patterns of division, migration and differentiation of neural progenitor cells are crucial for proper brain development and function1,2. To understand the behavior of neural progenitor cells in the complex in vivo environment, time-lapse live imaging of neural progenitor cells in an intact brain is critically required. In this video, we exploit the unique features of zebrafish embryos to visualize the development of forebrain neural progenitor cells in vivo. We use electroporation to genetically and sparsely label individual neural progenitor cells. Briefly, DNA constructs coding for fluorescent markers were injected into the forebrain ventricle of 22 hours post fertilization (hpf) zebrafish embryos and electric pulses were delivered immediately. Six hours later, the electroporated zebrafish embryos were mounted with low melting point agarose in glass bottom culture dishes. Fluorescently labeled neural progenitor cells were then imaged for 36hours with fixed intervals under a confocal microscope using water dipping objective lens. The present method provides a way to gain insights into the in vivo development of forebrain neural progenitor cells and can be applied to other parts of the central nervous system of the zebrafish embryo.Download video file.(49M, mov)  相似文献   

17.
小鼠短暂前脑缺血海马中半胱天冬酶-3酶原表达的变化   总被引:5,自引:0,他引:5  
通过测定脑缺血再灌注时海马中半胱天冬酶-3酶原(procaspase-3)的表达变化, 从细胞凋亡的角度探讨脑缺血再灌注损伤的分子生物学机制及procaspase-3的活化机制.将C57BL/6N小鼠随机分为假手术组(正常对照组)、缺血再灌注组(I/R组), 后者夹闭双侧颈总动脉20 min后再通血流, 建立前脑缺血再灌注模型, 分别于再灌注6 h、12 h、24 h和48 h取海马.采用蛋白免疫印迹(Western blotting)方法检测海马中procaspase-3的表达变化.结果显示, 12 h I/R及24hI/R组海马中总procaspase-3水平与假手术组相比有明显升高, 且差异有统计学意义(P<0.05),24 h I/R组海马中去磷酸化水平与假手术组相比有明显升高, 且差异有统计学意义(P<0.05),而各组procaspase-3磷酸化水平与假手术组相比差异无统计学意义.结果提示, 脑缺血再灌注损伤诱发procaspase-3表达增加,其中procaspase-3去磷酸化水平高明显, 提示脑缺血再灌注损伤可能诱发procaspase-3去磷酸化, 继而促进procaspase-3转化为活性形式.  相似文献   

18.
The secretion of glucocorticoids in mammals is under circadian control, but glucocorticoids themselves are also implicated in modulating circadian clock gene expression. We have shown that the expression of the circadian clock protein PER1 in the forebrain is modulated by stress, and that this effect is associated with changes in plasma corticosterone levels, suggesting a possible role for glucocorticoids in the mediation of stress-induced changes in the expression of PER1 in the brain. To study this, we assessed the effects of adrenalectomy and of pretreatment with the glucocorticoid receptor antagonist, mifepristone, on the expression of PER1 in select limbic and hypothalamic regions following acute exposure to a neurogenic stressor, restraint, or a systemic stressor, 2-Deoxy-D-glucose (2DG) in rats. Acute restraint suppressed PER1 expression in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and the central nucleus of the amygdala (CEAl), whereas 2DG increased PER1 in both regions. Both stressors increased PER1 expression in the paraventricular (PVN) and dorsomedial (DMH) nuclei of the hypothalamus, and the piriform cortex (Pi). Adrenalectomy and pretreatment with mifepristone reversed the effects of both stressors on PER1 expression in the BNSTov and CEAl, and blocked their effects in the DMH. In contrast, both treatments enhanced the effects of restraint and 2DG on PER1 levels in the PVN. Stress-induced PER1 expression in the Pi was unaffected by either treatment. PER1 expression in the suprachiasmatic nucleus, the master circadian clock, was not altered by either exposure to stress or by the glucocorticoid manipulations. Together, the results demonstrate a key role for glucocorticoid signaling in stress-induced changes in PER1 expression in the brain.  相似文献   

19.
Genes at the SerH locus of the ciliated protist Tetrahymena thermophila specify the major (H) surface protein on cells grown at 20-36 degrees. Alternative proteins L, T, S and I are expressed under different conditions of temperature and culture media. Mutants unable to express SerH genes were examined for expression of these proteins, also called immobilization or i-antigens, at both H and non-H conditions. In all instances, one or more i-antigens were expressed in the absence of H, and, in most instances, expression of i-antigens under non-H conditions was also affected. Examples of the latter include both the continued expression of H-replacement antigens and the inability to express certain other i-antigens. Such multiple effects were observed in mutants with trans-acting (rseA, rseB, rseC, RseD) and cis-acting (H1-1 and H1-2) mutations, but not in mutants in which SerH is affected developmentally (B2092, B2101, B2103, B2107). These interactions suggest that the wild-type genes identified by mutation exert both positive and negative effects in the regulation of i-antigen gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号