首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

2.
3.
4.
5.
6.
7.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

8.
9.
10.
11.
12.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

13.
The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.Motoneurons are extremely extended neurons that mediate the control of all muscle types by the central nervous system. Therefore, diseases involving progressive motoneuron degeneration such as amyotrophic lateral sclerosis (ALS)1 (OMIM: 105400) or spinal muscle atrophy (OMIM: 253300) are particularly devastating and generally fatal disorders. Today, ALS is believed to form a phenotypic continuum with the disease entity frontotemporal lobe degeneration (OMIM: 600274) (1, 2). About 10% of ALS cases are known to be inherited, but the vast majority are considered sporadic. The number of inherited cases might be underestimated because of incomplete family histories, non-paternity, early death of family members, or incomplete penetrance (3).Mutations in several genes have been reported for the familial form, including in Sod1 (4), Als2 (5), Setx (6), Vapb (7), Tardbp (8, 9), Fus/Tls (10, 11), Vcp (12), Pfn1 (13), and several others (reviewed in Ref. 14). The most frequent genetic cause of inherited ALS was recently shown to be a hexanucleotide repeat expansion in an intron of a gene of unknown function called C9orf72 (1517). Based on the spectrum of known mutations, several disease mechanisms for ALS have been proposed, including dysfunction of protein folding, axonal transport, RNA splicing, and metabolism (reviewed in Refs. 14, 18, and 19). Despite intensive research, it is still unclear whether a main common molecular pathway or mechanism underlies motoneuron degeneration in ALS and frontotemporal lobe degeneration. Spinal muscle atrophy is caused by homozygous mutations or deletions in the survival of motor neuron gene (Smn1) that presumably impair the RNA metabolism through diminished functionality of the Smn1 gene product (20). Over recent decades several model systems have been established to investigate ALS (21). These include transgenic animal models such as mouse (22), drosophila (23), and zebrafish (24). In cell-based studies, primary motoneurons cultured from rodent embryos (25) or motoneuron-like cell lines are employed. Primary cells are considered to more closely mimic the in vivo situation, but they are more challenging to establish and maintain. In contrast, the degree of functional relevance of cell lines can be difficult to establish, but they can be propagated without limitation and are well suited for high-throughput analysis. In particular, the spinal cord neuron–neuroblastoma hybrid cell line NSC-34 (26) and the mouse neuroblastoma cell line N2a (27) are widely used not only to assess motoneuron function, but also to study disease mechanisms in motoneurons (28, 29).As proteins are the functional actors in cells, proteomics should be able to make important contributions to the characterization and evaluation of cellular models. In particular, by identifying and quantifying the expressed proteins and bioinformatically interpreting the results, one can obtain enough information to infer functional differences. Our laboratory has previously shown proof of concept of such an approach by comparing the expression levels of about 4,000 proteins between primary hepatocytes and a hepatoma cell line (30). Very recently, mass-spectrometry-based proteomics has achieved sufficient depth and accuracy to quantify almost the entire proteome of mammalian cell lines (3133). Furthermore, new instrumentation and algorithms now make it possible to perform label-free quantification between multiple cellular systems and with an accuracy previously associated only with stable isotope labeling techniques (34, 35).To evaluate the suitability of motoneuron-like cell lines as cellular model systems for research on ALS and related disorders, we characterized the proteomes of two widely used cell lines, NSC-34 and N2a, and compared them with the proteomes of mouse primary motoneurons and non-neuronal control cell lines. To generate primary motoneurons, we employed a recently described culturing system that makes it possible to isolate highly enriched motoneuron populations in less than 8 h (25). We identified more than 10,000 proteins and investigated differences in quantitative levels of individual neuron-associated proteins and pathways related to motoneuron function and disease mechanisms.  相似文献   

14.
15.
16.
17.
The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes that were free or often loosely bound to the cell wall exterior. Melanin production was boosted by the addition of N-acetylglucosamine to the medium, indicating a possible association between melanin production and chitin synthesis. Melanin externalization was blocked in a mutant specifically disrupted in the chitin synthase-encoding gene CHS2. Melanosomes remained within the outermost cell wall layers in chs3Δ and chs2Δ chs3Δ mutants but were fully externalized in chs8Δ and chs2Δ chs8Δ mutants. All the CHS mutants synthesized dark pigment at equivalent rates from mixed membrane fractions in vitro, suggesting it was the form of chitin structure produced by the enzymes, not the enzymes themselves, that was involved in the melanin externalization process. Mutants with single and double disruptions of the chitinase genes CHT2 and CHT3 and the chitin pathway regulator ECM33 also showed impaired melanin externalization. We hypothesize that the chitin product of Chs3 forms a scaffold essential for normal externalization of melanosomes, while the Chs8 chitin product, probably produced in cell walls in greater quantity in the absence of CHS2, impedes externalization.Candida albicans is a major opportunistic fungal human pathogen that causes a wide variety of infections (9, 68). In healthy individuals C. albicans resides as a commensal within the oral cavity and gastrointestinal and urogenital tracts. However, in immunocompromised hosts, C. albicans causes infections ranging in severity from mucocutaneous infections to life-threatening disseminated diseases (9, 68). Research into the pathogenicity of C. albicans has revealed a complex mix of putative virulence factors (7, 60), perhaps reflecting the fine balance this species strikes between commensal colonization and opportunistic invasion of the human host.Melanins are biological pigments, typically dark brown or black, formed by the oxidative polymerization of phenolic compounds. They are negatively charged hydrophobic molecules with high molecular weights and are insoluble in both aqueous and organic solvents. Their insolubility makes melanins difficult to study, and no definitive structure has yet been found for them; they probably represent an amorphous mixture of polymers (35). There are various types of melanin in nature, including eumelanin and phaeomelanin (76). Two principal types of melanin are found in the fungal kingdom. The majority are 1.8-dihydroxynapthalene (DNH) melanins synthesized from acetyl-coenzyme A (CoA) via the polyketide pathway (5). DNH melanins have been found in a wide range of opportunistic fungal pathogens of humans, including dark (dematiaceous) molds, such as Cladosporium, Fonsecaea, Phialophora, and Wangiella species, and as conidial pigments in Aspergillus fumigatus and Aspergillus niger (41, 80, 87, 88). However, several other fungal pathogens, including Blastomyces dermatitidis, Coccidioides posadasii, Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, and Sporothrix schenckii, produce eumelanin (3,4-dihydroxyphenylalanine [DOPA]-melanin) through the activity of a polyphenol oxidase (laccase) and require an exogenous o-diphenolic or p-diphenolic substrate, such as l-DOPA (16, 30, 63,65, 67, 79).The production of melanin in humans and other mammals is a function of specialized cells called melanocytes. Particles of melanin polymers, sometimes, including more than one melanin type, are built up within membrane-bound organelles called melanosomes (76), and these are actively transported along microtubules to the tips of dendritic outgrowths of melanocytes, from where they are transferred to neighboring cells (32, 81). The mechanism of intercellular transfer of melanosomes has not yet been established, but the export process probably involves the fusion of cell and vesicular membranes rather than secretion of naked melanin (82). In pathogenic fungi, melanins are often reported to be associated with or “in” the cell wall (35, 36, 50, 72, 79). However, there is variation between species: the melanin may be located external to the wall, e.g., in P. brasiliensis (79); within the wall itself (reviewed in reference 42); or as a layer internal to the wall and external to the cell membrane, e.g., in C. neoformans (22, 45, 85). However, mutants of C. neoformans bearing disruptions of three CDA genes involved in the biosynthesis of cell wall chitosan, or of CHS3, encoding a chitin synthase, or of CSR2, which probably regulates Chs3, all released melanin into the culture supernatant, suggesting a role for chitin or chitosan in retaining the pigment polymer in its normal intracellular location (3, 4). However, vesicles externalized from C. neoformans cells also show laccase activity (21), so the effect of chitin may be on vesicle externalization rather than on melanin itself. Internal structures compatible with mammalian melanosomes have been observed in Cladosporium carrionii (73) and in Fonsecaea pedrosoi (2, 26). Remarkably, F. pedrosoi also secretes melanin and locates the polymer within the cell wall (1, 2, 25, 27, 74).Melanization has been found to play an important role in the virulence of several human fungal pathogens, such as C. neoformans, A. fumigatus, P. brasiliensis, S. schenckii, H. capsulatum, B. dermatitidis, and C. posadasii (among recent reviews are references 29, 42, 62, 74, and 79). From these and earlier reviews of the extensive literature, melanin has been postulated to be involved in a range of virulence-associated properties, including interactions with host cells; protection against oxidative stresses, UV light, and hydrolytic enzymes; resistance to antifungal agents; iron-binding activities; and even the harnessing of ionizing radiation in contaminated soils (15). The most extensively studied fungal pathogen for the role of melanization is C. neoformans, which possesses two genes, LAC1 and LAC2, encoding melanin-synthesizing laccases (52, 69, 90). It has been known since early studies with naturally occurring albino variants of C. neoformans (39) that melanin-deficient strains are attenuated in mouse models of cryptococcosis. Deletion of both the LAC1 and LAC2 genes reduced survival of C. neoformans in macrophages (52), and a study based on otherwise isogenic LAC1+ and LAC1 strains confirmed the importance of LAC1 in experimental virulence (66). Other genes in the regulatory pathway for LAC1 are similarly known to be essential to virulence (12, 84).C. albicans has been shown to produce melanin with DOPA as a substrate for production of the polymer (53). The cells could be treated with hot acids to produce typical melanin “ghosts,” and antibodies specific for melanin reacted with the fungal cells by immunohistochemistry with tissues from experimentally infected mice, demonstrating that C. albicans produces melanin in vivo (53). However, no candidate genes encoding laccases have yet been identified in the C. albicans genome (http://www.candidagenome.org/). In this study, we investigated the production of melanin by C. albicans and showed that its normal externalization from wild-type cells, including formation of melanosomes, can be altered to an intracellular and intrawall location by mutation of genes involved in chitin synthesis. C. albicans has four genes encoding chitin synthase enzymes. CHS1 is an essential gene under normal conditions (59), and its product is the main enzyme involved in septum formation (83). Chs3 forms the bulk of the chitin in the cell wall and the chitinous ring at sites of bud emergence (8, 51, 57), while Chs2 contributes to differential chitin levels found between yeast and hyphal forms of the fungus, and Chs8 influences the architecture of chitin microfibrils (43, 51, 55, 57, 58). We found that melanin externalization was unaffected in a chs8Δ mutant but was reduced or abrogated in chs2Δ and chs3Δ mutants. Expression profiles of melanin-producing cells grown in the presence of l-DOPA did not identify any potential laccase-synthesizing genes.  相似文献   

18.
Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d ≥ PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.Infection with Helicobacter pylori strains bearing cagA (cytotoxin-associated gene A)-positive strains is the strongest risk factor for the development of gastric carcinoma, the second leading cause of cancer-related death worldwide (13). The cagA gene is located within a 40-kb DNA fragment, termed the cag pathogenicity island, which is specifically present in the genome of cagA-positive H. pylori strains (46). In addition to cagA, there are ∼30 genes in the cag pathogenicity island, many of which encode a bacterial type IV secretion system that delivers the cagA-encoded CagA protein into gastric epithelial cells (710). Upon delivery into gastric epithelial cells, CagA is localized to the plasma membrane, where it undergoes tyrosine phosphorylation at the C-terminal Glu-Pro-Ile-Tyr-Ala motifs by Src family kinases or c-Abl kinase (1114). The C-terminal Glu-Pro-Ile-Tyr-Ala-containing region of CagA is noted for the structural diversity among distinct H. pylori isolates. Oncogenic potential of CagA has recently been confirmed by a study showing that systemic expression of CagA in mice induces gastrointestinal and hematological malignancies (15).When expressed in gastric epithelial cells, CagA induces morphological transformation termed the hummingbird phenotype, which is characterized by the development of one or two long and thin protrusions resembling the beak of the hummingbird. It has been thought that the hummingbird phenotype is related to the oncogenic action of CagA (7, 1619). Pathophysiological relevance for the hummingbird phenotype in gastric carcinogenesis has recently been provided by the observation that infection with H. pylori carrying CagA with greater ability to induce the hummingbird phenotype is more closely associated with gastric carcinoma (2023). Elevated motility of hummingbird cells (cells showing the hummingbird phenotype) may also contribute to invasion and metastasis of gastric carcinoma.In host cells, CagA interacts with the SHP-2 phosphatase, C-terminal Src kinase, and Crk adaptor in a tyrosine phosphorylation-dependent manner (16, 24, 25) and also associates with Grb2 adaptor and c-Met in a phosphorylation-independent manner (26, 27). Among these CagA targets, much attention has been focused on SHP-2 because the phosphatase has been recognized as a bona fide oncoprotein, gain-of-function mutations of which are found in various human malignancies (17, 18, 28). Stable interaction of CagA with SHP-2 requires CagA dimerization, which is mediated by a 16-amino acid CagA-multimerization (CM)2 sequence present in the C-terminal region of CagA (29). Upon complex formation, CagA aberrantly activates SHP-2 and thereby elicits sustained ERK MAP kinase activation that promotes mitogenesis (30). Also, CagA-activated SHP-2 dephosphorylates and inhibits focal adhesion kinase (FAK), causing impaired focal adhesions. It has been shown previously that both aberrant ERK activation and FAK inhibition by CagA-deregulated SHP-2 are involved in induction of the hummingbird phenotype (31).Partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) is an evolutionally conserved serine/threonine kinase originally isolated in C. elegans (3234). Mammalian cells possess four structurally related PAR1 isoforms, PAR1a/MARK3, PAR1b/MARK2, PAR1c/MARK1, and PAR1d/MARK4 (3537). Among these, PAR1a, PAR1b, and PAR1c are expressed in a variety of cells, whereas PAR1d is predominantly expressed in neural cells (35, 37). These PAR1 isoforms phosphorylate microtubule-associated proteins (MAPs) and thereby destabilize microtubules (35, 38), allowing asymmetric distribution of molecules that are involved in the establishment and maintenance of cell polarity.In polarized epithelial cells, CagA disrupts the tight junctions and causes loss of apical-basolateral polarity (39, 40). This CagA activity involves the interaction of CagA with PAR1b/MARK2 (19, 41). CagA directly binds to the kinase domain of PAR1b in a tyrosine phosphorylation-independent manner and inhibits the kinase activity. Notably, CagA binds to PAR1b via the CM sequence (19). Because PAR1b is present as a dimer in cells (42), CagA may passively homodimerize upon complex formation with the PAR1 dimer via the CM sequence, and this PAR1-directed CagA dimer would form a stable complex with SHP-2 through its two SH2 domains.Because of the critical role of CagA in gastric carcinogenesis (7, 1619), it is important to elucidate the molecular basis underlying the morphogenetic activity of CagA. In this study, we investigated the role of PAR1 isoforms in induction of the hummingbird phenotype by CagA, and we obtained evidence that CagA-mediated inhibition of PAR1 kinases contributes to the development of the morphological change by perturbing microtubules and non-muscle myosin II.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号