首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depending on the stress type, plants activate various signal transduction pathways inducing the optimum defense process. This review is devoted to jasmonate (JA) dependent signaling involved in plant defense against biotic and abiotic stresses, including those determined by wounding, necrotrophic pathogens, pests, and herbivores. The sequence of major events of JA signaling is discussed. It is noted that JA signaling in plants is incorporated into a complex signaling network.  相似文献   

2.
Jasmonic acid (JA) is a natural hormone regulator involved in development,responses against wounding and pathogen attack.Upon perception of pathogens,JA is synthesized and mediates a signaling cascade ...  相似文献   

3.
4.
The strategies used by necrotrophic fungal pathogens to infect plants are often perceived as lacking the sophistication of their haustorium producing, host defence suppressing, biotrophic counterparts. There is also a relative paucity of knowledge regarding how effective gene-for-gene based resistance reactions might function against necrotrophic plant pathogens. However, recent data has emerged from a number of systems which has highlighted that particular species of necrotrophic (and/or hemibiotrophic) fungi, have evolved very sophisticated strategies for plant infection which appear, in fact, to hijack the host resistance responses that are commonly deployed against biotrophs. Both disease resistance (R) protein homologues and mitogen-activated protein kinase (MAPK) cascades commonly associated with incompatible disease resistance responses; appear to be targeted by necrotrophic fungi during compatible disease interactions. These findings highlight an emerging sophistication in the strategies deployed by necrotrophic fungi to infect plants.Key words: Mycosphaerella graminicola, Septoria tritici, Triticum aestivum, mitogen-activated protein kinase, programmed cell death, fungal pathogen, disease resistance, disease susceptibility, toxin  相似文献   

5.
Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.  相似文献   

6.
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.  相似文献   

7.
Qi L  Yan J  Li Y  Jiang H  Sun J  Chen Q  Li H  Chu J  Yan C  Sun X  Yu Y  Li C  Li C 《The New phytologist》2012,195(4):872-882
? Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. ? Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A.?brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A.?brassicicola infection together lead to an enhanced auxin response in host plants. ? Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. ? Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.  相似文献   

8.
9.
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.  相似文献   

10.
ABSTRACT: BACKGROUND: The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily ancient mechanism of signal transduction found in eukaryotic cells. In plants, MAPK cascades are associated with responses to various abiotic and biotic stresses such as plant pathogens. MAPK cascades function through sequential phosphorylation: MAPK kinase kinases (MAPKKKs) phosphorylate MAPK kinases (MAPKKs), and phosphorylated MAPKKs phosphorylate MAPKs. Of these three types of kinase, the MAPKKKs exhibit the most divergence in the plant genome. Their great diversity is assumed to allow MAPKKKs to regulate many specific signaling pathways in plants despite the relatively limited number of MAPKKs and MAPKs. Although some plant MAPKKKs, including the MAPKKKalpha of Nicotiana benthamiana (NbMAPKKKalpha), are known to play crucial roles in plant defense responses, the functional relationship among MAPKKK genes is poorly understood. Here, we performed a comparative functional analysis of MAPKKKs to investigate the signaling pathway leading to the defense response. RESULTS: We cloned three novel MAPKKK genes from N. benthamiana: NbMAPKKKbeta, NbMAPKKKgamma, and NbMAPKKKepsilon2. Transient overexpression of full-length NbMAPKKKbeta or NbMAPKKKgamma or their kinase domains in N. benthamiana leaves induced hypersensitive response (HR)-like cell death associated with hydrogen peroxide production. This activity was dependent on the kinase activity of the overexpressed MAPKKK. In addition, virus-induced silencing of NbMAPKKKbeta or NbMAPKKKgamma expression significantly suppressed the induction of programmed cell death (PCD) by viral infection. Furthermore, in epistasis analysis of the functional relationships among NbMAPKKKbeta, NbMAPKKKgamma, and NbMAPKKKalpha (previously shown to be involved in plant defense responses) conducted by combining transient overexpression analysis and virus-induced gene silencing, silencing of NbMAPKKKalpha suppressed cell death induced by the overexpression of the NbMAPKKKbeta kinase domain or of NbMAPKKKgamma, but silencing of NbMAPKKKbeta failed to suppress cell death induced by the overexpression of NbMAPKKKalpha or NbMAPKKKgamma. Silencing of NbMAPKKKgamma suppressed cell death induced by the NbMAPKKKbeta kinase domain but not that induced by NbMAPKKKalpha. CONCLUSIONS: These results demonstrate that in addition to NbMAPKKKalpha, NbMAPKKKbeta and NbMAPKKKgamma also function as positive regulators of PCD. Furthermore, these three MAPKKKs form a linear signaling pathway leading to PCD; this pathway proceeds from NbMAPKKKbeta to NbMAPKKKgamma to NbMAPKKKalpha.  相似文献   

11.
程曦  田彩娟  李爱宁  邱金龙 《遗传》2012,34(2):134-144
植物在与病原微生物共同进化过程中形成了复杂的免疫防卫体系。植物的先天免疫系统可大致分为两个层面。第一个层面的免疫基于细胞表面的模式识别受体对病原物相关分子模式的识别, 该免疫过程被称为病原物相关分子模式触发的免疫(PAMP-triggered immunity, PTI), 能帮助植物抵抗大部分病原微生物; 第二个层面的免疫起始于细胞内部, 主要依靠抗病基因编码的蛋白产物直接或间接识别病原微生物分泌的效应子并且激发防卫反应, 来抵抗那些能够利用效应子抑制第一层面免疫的病原微生物, 这一过程被称为效应子触发的免疫(Effector-triggered immunity, ETI)。这两个层面的免疫都是基于植物对“自我”及“非我”的识别, 依靠MAPK级联等信号网络, 将识别结果传递到细胞核内, 调控相应基因的表达, 做出适当的免疫应答。本文着重阐述了植物与病原微生物互作过程中不同层面的免疫反应所发生主要事件的分子基础及研究进展。  相似文献   

12.
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H2O2 accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.  相似文献   

13.
植物与病原微生物互作分子基础的研究进展   总被引:4,自引:0,他引:4  
Cheng X  Tian CJ  Li AN  Qiu JL 《遗传》2012,34(2):134-144
植物在与病原微生物共同进化过程中形成了复杂的免疫防卫体系。植物的先天免疫系统可大致分为两个层面。第一个层面的免疫基于细胞表面的模式识别受体对病原物相关分子模式的识别,该免疫过程被称为病原物相关分子模式触发的免疫(PAMP-triggered immunity,PTI),能帮助植物抵抗大部分病原微生物;第二个层面的免疫起始于细胞内部,主要依靠抗病基因编码的蛋白产物直接或间接识别病原微生物分泌的效应子并且激发防卫反应,来抵抗那些能够利用效应子抑制第一层面免疫的病原微生物,这一过程被称为效应子触发的免疫(Effector-triggered immunity,ETI)。这两个层面的免疫都是基于植物对"自我"及"非我"的识别,依靠MAPK级联等信号网络,将识别结果传递到细胞核内,调控相应基因的表达,做出适当的免疫应答。本文着重阐述了植物与病原微生物互作过程中不同层面的免疫反应所发生主要事件的分子基础及研究进展。  相似文献   

14.
In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.  相似文献   

15.
Programmed cell death (PCD), known as hypersensitive response cell death, has an important role in plant defense response. The signaling pathway of PCD remains unknown. We employed AAL toxin and Nicotiana umbratica to analysis plant PCD. AAL toxin is a pathogenicity factor of the necrotrophic pathogen Alternaria alternata f. sp. lycopersici. N. umbratica is sensitive to AAL toxin, susceptible to pathogens, and effective in Tobacco rattle virus-based virus-induced gene silencing (VIGS). VIGS analyses indicated that AAL toxin-triggered cell death (ACD) is dependent upon the mitogen-activated protein (MAP) kinase kinase MEK2, which is upstream of both salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) responsible for ethylene (ET) synthesis. ET treatment of MEK2-silenced N. umbratica re-established ACD. In SIPK- and WIPK-silenced N. umbratica, ACD was compromised and ET accumulation was not observed. However, in contrast to the case of MEK2-silenced plants, ET treatment did not induce cell death in SIPK- and WIPK-silenced plants. This work showed that ET-dependent pathway and MAP kinase cascades are required in ACD. Our results suggested that MEK2-SIPK/WIPK cascades have roles in ET biosynthesis; however, SIPK and WIPK have other roles in ET signaling or another pathway leading to cell death by AAL toxin.  相似文献   

16.
Role of mitogen-activated protein kinases in plant immunity   总被引:11,自引:0,他引:11  
  相似文献   

17.
18.
19.
Rowe HC  Kliebenstein DJ 《Genetics》2008,180(4):2237-2250
The genetic architecture of plant defense against microbial pathogens may be influenced by pathogen lifestyle. While plant interactions with biotrophic pathogens are frequently controlled by the action of large-effect resistance genes that follow classic Mendelian inheritance, our study suggests that plant defense against the necrotrophic pathogen Botrytis cinerea is primarily quantitative and genetically complex. Few studies of quantitative resistance to necrotrophic pathogens have used large plant mapping populations to dissect the genetic structure of resistance. Using a large structured mapping population of Arabidopsis thaliana, we identified quantitative trait loci influencing plant response to B. cinerea, measured as expansion of necrotic lesions on leaves and accumulation of the antimicrobial compound camalexin. Testing multiple B. cinerea isolates, we identified 23 separate QTL in this population, ranging in isolate-specificity from being identified with a single isolate to controlling resistance against all isolates tested. We identified a set of QTL controlling accumulation of camalexin in response to pathogen infection that largely colocalized with lesion QTL. The identified resistance QTL appear to function in epistatic networks involving three or more loci. Detection of multilocus connections suggests that natural variation in specific signaling or response networks may control A. thaliana-B. cinerea interaction in this population.  相似文献   

20.
Interactions Between Signaling Compounds Involved in Plant Defense   总被引:17,自引:0,他引:17  
To elude or minimize the effects of disease and herbivory, plants rely on both constitutive and inducible defenses. In response to attack by pathogens or pests, plants activate signaling cascades leading to the accumulation of endogenous hormones that trigger the induction of defenses. Salicylic acid (SA), jasmonic acid (JA), and ethylene (E) are plant-specific hormones involved in communicating the attack by many pathogens and pests in a broad range of plant species. SA, JA and E signaling cascades do not activate defenses independently, but rather establish complex interactions that determine the response mounted in each condition. Deployment of defenses is energetically costly, so a trade-off between the activation of resistance against a particular pest or pathogen and down regulation of other defenses is common. Conversely, activation of broad range resistance in response to an initial attack may serve to deter opportunistic agents. Thus, the interaction among SA, JA and E defense signaling pathways can be antagonistic, cooperative or synergistic, depending on the plant species, the combination of organisms attacking the plants, and the developmental and physiological state of the plant. A characterization of the interactions among defense signaling pathways and the determination of the molecular components mediating cross-talk between the different pathways will be essential for the rational design of transgenic plants with increased resistance to disease and/or herbivores without critically compromising other agronomic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号