首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A wealth of studies has investigated how chemical sensitivity is affected by temperature, however, almost always under different constant rather than more realistic fluctuating regimes. Here we compared how the nematode Caenorhabditis elegans responds to copper at constant temperatures (8–24°C) and under fluctuation conditions of low (±4°C) and high (±8°C) amplitude (averages of 12, 16, 20°C and 16°C respectively). The DEBkiss model was used to interpret effects on energy budgets. Increasing constant temperature from 12–24°C reduced time to first egg, life-span and population growth rates consistent with temperature driven metabolic rate change. Responses at 8°C did not, however, accord with this pattern (including a deviation from the Temperature Size Rule), identifying a cold stress effect. High amplitude variation and low amplitude variation around a mean temperature of 12°C impacted reproduction and body size compared to nematodes kept at the matching average constant temperatures. Copper exposure affected reproduction, body size and life-span and consequently population growth. Sensitivity to copper (EC50 values), was similar at intermediate temperatures (12, 16, 20°C) and higher at 24°C and especially the innately stressful 8°C condition. Temperature variation did not increase copper sensitivity. Indeed under variable conditions including time at the stressful 8°C condition, sensitivity was reduced. DEBkiss identified increased maintenance costs and increased assimilation as possible mechanisms for cold and higher copper concentration effects. Model analysis of combined variable temperature effects, however, demonstrated no additional joint stressor response. Hence, concerns that exposure to temperature fluctuations may sensitise species to co-stressor effects seem unfounded in this case.  相似文献   

2.
To examine the effect of ontogeny on metabolic depression in the cunner (Tautogolabrus adspersus), and to understand how ontogeny and the ability to metabolically depress influence this species'' upper thermal tolerance: 1) the metabolic rate of 9°C-acclimated cunner of three size classes [0.2–0.5 g, young of the year (YOY); 3–6 g, small; and 80–120 g, large (adult)] was measured during a 2°C per day decrease in temperature; and 2) the metabolic response of the same three size classes of cunner to an acute thermal challenge [2°C h−1 from 10°C until Critical Thermal Maximum, CTMax] was examined, and compared to that of the Atlantic cod (Gadus morhua). The onset-temperature for metabolic depression in cunner increased with body size, i.e. from 5°C in YOY cunner to 7°C in adults. In contrast, the extent of metabolic depression was ∼80% (Q10 = ∼15) for YOY fish, ∼65% (Q10 = ∼8) for small fish and ∼55% (Q10 = ∼5) for adults, and this resulted in the metabolic scaling exponent (b) gradually increasing from 0.84 to 0.92 between 9°C to 1°C. All size classes of cunner had significantly (approximately 60%) lower routine metabolic rates at 10°C than Atlantic cod. However, there was no species'' difference in the temperature-induced maximum metabolic rate, and this resulted in factorial metabolic scope values that were more than two-fold greater for cunner, and CTMax values that were 6–9°C higher (∼21 vs. 28°C). These results: 1) show that ontogeny influences the temperature of initiation and the extent of metabolic depression in cunner, but not O2 consumption when in a hypometabolic state; and 2) suggest that the evolution of cold-induced metabolic depression in this northern wrasse species has not resulted in a trade-off with upper thermal tolerance, but instead, an enhancement of this species'' metabolic plasticity.  相似文献   

3.
The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juveniles was also evaluated. Ovigerous females and recently hatched juveniles (JI) were maintained during egg incubation and for a 90-day period, respectively, at three temperatures (24, 28 and 32°C). Incubation period increased with decreasing water temperature, but the number and size of JI were similar among treatments. At day 30 of the 90-day period, body weight and growth increment (GI) at 24°C were lower than those at 28 and 32°C. On subsequent days, GI at 24°C exceeded that at 28 and 32°C, leading to a similar body weight among treatments. These results suggest growth was delayed at 24°C, but only for 30 days after hatching. The lipid concentration tended to be lowest, intermediate and highest at 28, 32 and 24°C, respectively, possibly as a consequence of the metabolic processes involved in growth and ovarian maturation. Protein and glycogen concentrations were similar among treatments. Both the growth trajectory and biochemical composition of shrimps were affected by the temperature experienced during the 90-day growth period independently of the embryo incubation temperature. During the growth period, shrimps reached sexual maturity and mated, with the highest proportion of ovigerous females occurring at 28°C. All the females that matured and mated at 32°C lost their eggs, indicating a potentially stressful effect of high temperature on ovarian maturation. Based on high survival and good growth performance of shrimps at the three temperatures tested over the 90-day period it is concluded that N. heteropoda heteropoda is tolerant to a wide range of water temperatures, with 28°C being the optimum temperature for its culture.  相似文献   

4.
Hunting cheetah reportedly store metabolic heat during the chase and abandon chases because they overheat. Using biologging to remotely measure the body temperature (every minute) and locomotor activity (every 5 min) of four free-living cheetah, hunting spontaneously, we found that cheetah abandoned hunts, but not because they overheated. Body temperature averaged 38.4°C when the chase was terminated. Storage of metabolic heat did not compromise hunts. The increase in body temperature following a successful hunt was double that of an unsuccessful hunt (1.3°C ± 0.2°C versus 0.5°C ± 0.1°C), even though the level of activity during the hunts was similar. We propose that the increase in body temperature following a successful hunt is a stress hyperthermia, rather than an exercise-induced hyperthermia.  相似文献   

5.
Developing soybean (Glycine max) seeds respond to a change in growth temperature by changing the level of stearoyl acyl carrier protein desaturase activity in the tissue. After 20 hours in liquid culture, seeds grown at 20°C show an increase in activity while seeds grown at 35°C show a decrease in activity, relative to their preculture levels. Analysis of the enzyme from both growth conditions shows the change not to be due to induction of kinetically distinct iosenzymes; desaturase activities from both 20°C and 35°C have identical behavior with regard to pH, temperature optimum, substrate concentration and cofactor requirements. Experiments with boiled extracts indicate that the modulation is not caused by induction of metabolic effectors. From these data, it appears that stearoyl-acyl carrier protein desaturase responds to changes in growth temperature by altering the level of active enzyme present in the tissue. The magnitude of this response is a function of the developmental stage of the seed and not a function of the growth conditions of the parent plant. Changing the age of the seeds from early late R5 changed the ratio of 20:35°C activity from 3.8:1 to 1.2:1. Changing the temperature at which the parent plants were grown over a range from 20/12°C to 34/28°C (day/night) produced only minor, and inconsistent, changes in the ratio of 20:35°C activities.  相似文献   

6.
  1. Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.
  2. Using flow‐through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).
  3. Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat‐tolerant arid‐zone species (e.g., ≥4.7× baseline rates). Heat‐stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.
  4. Our results suggest that buntings’ well‐developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
  相似文献   

7.
The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model''s implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30–40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and −0.43 eV, deviating excessively from the UTD''s predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory''s generality and its mechanistic basis.  相似文献   

8.
This study is aimed at the development and application of a convenient and rapid optical assay to monitor the wet-heat resistance of bacterial endospores occurring in food samples. We tested the feasibility of measuring the release of the abundant spore component dipicolinic acid (DPA) as a probe for heat inactivation. Spores were isolated from the laboratory type strain Bacillus subtilis 168 and from two food product isolates, Bacillus subtilis A163 and Bacillus sporothermodurans IC4. Spores from the lab strain appeared much less heat resistant than those from the two food product isolates. The decimal reduction times (D values) for spores from strains 168, A163, and IC4 recovered on Trypticase soy agar were 1.4, 0.7, and 0.3 min at 105°C, 120°C, and 131°C, respectively. The estimated Z values were 6.3°C, 6.1°C, and 9.7°C, respectively. The extent of DPA release from the three spore crops was monitored as a function of incubation time and temperature. DPA concentrations were determined by measuring the emission at 545 nm of the fluorescent terbium-DPA complex in a microtiter plate fluorometer. We defined spore heat resistance as the critical DPA release temperature (Tc), the temperature at which half the DPA content has been released within a fixed incubation time. We found Tc values for spores from Bacillus strains 168, A163, and IC4 of 108°C, 121°C, and 131°C, respectively. On the basis of these observations, we developed a quantitative model that describes the time and temperature dependence of the experimentally determined extent of DPA release and spore inactivation. The model predicts a DPA release rate profile for each inactivated spore. In addition, it uncovers remarkable differences in the values for the temperature dependence parameters for the rate of spore inactivation, DPA release duration, and DPA release delay.  相似文献   

9.
Young mice of a selected line of the dilute brown strain of mice exhibit over the range 15–25°C. (body temperature) a relation of frequency of breathing movements to temperature such that when fitted by the Arrhenius equation the data give a value for the constant µ of 24,000± calories or, less frequently, 28,000±. Young mice of an inbred albino strain show over the range 15–20°C. a value of µ = 34,000±, or, less frequently, 14,000±, with a critical temperature at about 20°C. and a value of µ = 14,000± above 20°C. The F1 hybrids of these two strains, and the backcross generations to either parent strain, exhibit only those four values of the temperature characteristic observed in the parent strains and none other. One may therefore speak of the inheritance of the value of the constant µ, but the inheritance shows in this instance no Mendelian behavior. Furthermore there appears to be inherited the occurrence (or absence) of a critical temperature at 20°C. These experiments indicate the "biological reality" of the temperature characteristics.  相似文献   

10.
Differential scanning calorimetry (DSC) and fatty acid analysis were used to determine how cold shocking reduces the thermal stability of Listeria monocytogenes. Additionally, antibiotics that can elicit production of cold or heat shock proteins were used to determine the effect of translation blockage on ribosome thermal stability. Fatty acid profiles showed no significant variations as a result of cold shock, indicating that changes in membrane fatty acids were not responsible for the cold shock-induced reduction in thermal tolerance. Following a 3-h cold shock from 37 to 0°C, the maximum denaturation temperature of the 50S ribosomal subunit and 70S ribosomal particle peak was reduced from 73.4 ± 0.1°C (mean ± standard deviation) to 72.1 ± 0.5°C (P ≤ 0.05), indicating that cold shock induced instability in the associated ribosome structure. The maximum denaturation temperature of the 30S ribosomal subunit peak did not show a significant shift in temperature (from 67.5 ± 0.4°C to 66.8 ± 0.5°C) as a result of cold shock, suggesting that either 50S subunit or 70S particle sensitivity was responsible for the intact ribosome fragility. Antibiotics that elicited changes in maximum denaturation temperature in ribosomal components also elicited reductions in thermotolerance. Together, these data suggest that ribosomal changes resulting from cold shock may be responsible for the decrease in D value observed when L. monocytogenes is cold shocked.  相似文献   

11.
A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20°C versus a 15°C to 25°C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 µmol photons m−2 s−1. No differences in algal growth (Chlorophyll a) were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production.  相似文献   

12.
Temperature is one of the most important parameters affecting the length and rate of alcoholic fermentation and final wine quality. Wine produced at low temperature is often considered to have improved sensory qualities. However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase, and sluggish or stuck fermentations. To investigate the effects of temperature on commercial wine yeast, we compared its metabolome growing at 12°C and 28°C in a synthetic must. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae. This is the case of the cryotolerant yeasts Saccharomyces bayanus var. uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the metabolome of these species growing at 12°C, which we compared with the metabolome of S. cerevisiae (not well adapted at low temperature) at the same temperature. Our results show that the main differences between the metabolic profiling of S. cerevisiae growing at 12°C and 28°C were observed in lipid metabolism and redox homeostasis. Moreover, the global metabolic comparison among the three species revealed that the main differences between the two cryotolerant species and S. cerevisiae were in carbohydrate metabolism, mainly fructose metabolism. However, these two species have developed different strategies for cold resistance. S. bayanus var. uvarum presented elevated shikimate pathway activity, while S. kudriavzevii displayed increased NAD+ synthesis.  相似文献   

13.
The objective of this study was to evaluate the combined effects of thermal acclimation and n-3 highly unsaturated fatty acids (n-3 HUFA) content of the food source on the aerobic capacities of fish in a thermal changing environment. The model used was the golden grey mullet Liza aurata, a species of high ecological importance in temperate coastal areas. For four months, fish were exposed to two food sources with contrasting n-3 HUFA contents (4.8% ecosapentaenoic acid EPA + docosahexaenoic acid DHA on the dry matter DM basis vs. 0.2% EPA+DHA on DM) combined with two acclimation temperatures (12°C vs. 20°C). The four experimental conditions were LH12, LH20, HH12 and HH20. Each group was then submitted to a thermal challenge consisting of successive exposures to five temperatures (9°C, 12°C, 16°C, 20°C, 24°C). At each temperature, the maximal and minimal metabolic rates, metabolic scope, and the maximum swimming speed were measured. Results showed that the cost of maintenance of basal metabolic activities was particularly higher when n-3 HUFA food content was low. Moreover, fish exposed to high acclimation temperature combined with a low n-3 HUFA dietary level (LH20) exhibited a higher aerobic scope, as well as a greater expenditure of energy to reach the same maximum swimming speed as other groups. This suggested a reduction of the amount of energy available to perform other physiological functions. This study is the first to show that the impact of lowering n-3 HUFA food content is exacerbated for fish previously acclimated to a warmer environment. It raises the question of the consequences of longer and warmer summers that have already been recorded and are still expected in temperate areas, as well as the pertinence of the lowering n-3 HUFA availability in the food web expected with global change, as a factor affecting marine organisms and communities.  相似文献   

14.
Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) are foodborne pathogens, and outbreaks are often associated with poultry products. Chickens are typically asymptomatic when colonized by these serovars; however, the factors contributing to this observation are uncharacterized. Whereas symptomatic mammals have a body temperature between 37°C and 39°C, chickens have a body temperature of 41°C to 42°C. Here, in vivo experiments using chicks demonstrated that numbers of viable S. Typhimurium or S. Enteritidis bacteria within the liver and spleen organ sites were ≥4 orders of magnitude lower than those within the ceca. When similar doses of S. Typhimurium or S. Enteritidis were given to C3H/HeN mice, the ratio of the intestinal concentration to the liver/spleen concentration was 1:1. In the avian host, this suggested poor survival within these tissues or a reduced capacity to traverse the host epithelial layer and reach liver/spleen sites or both. Salmonella pathogenicity island 1 (SPI-1) promotes localization to liver/spleen tissues through invasion of the epithelial cell layer. Following in vitro growth at 42°C, SPI-1 genes sipC, invF, and hilA and the SPI-1 rtsA activator were downregulated compared to expression at 37°C. Overexpression of the hilA activators fur, fliZ, and hilD was capable of inducing hilA-lacZ at 37°C but not at 42°C despite the presence of similar levels of protein at the two temperatures. In contrast, overexpression of either hilC or rtsA was capable of inducing hilA and sipC at 42°C. These data indicate that physiological parameters of the poultry host, such as body temperature, have a role in modulating expression of virulence.  相似文献   

15.
It is widely considered that most organisms cannot survive prolonged exposure to temperatures below 0°C, primarily because of the damage caused by the water in cells as it freezes. However, some organisms are capable of surviving extreme variations in environmental conditions. In the case of temperature, the ability to survive subzero temperatures is referred to as cryobiosis. We show that the ozobranchid leech, Ozobranchus jantseanus, a parasite of freshwater turtles, has a surprisingly high tolerance to freezing and thawing. This finding is particularly interesting because the leach can survive these temperatures without any acclimation period or pretreatment. Specifically, the leech survived exposure to super-low temperatures by storage in liquid nitrogen (−196°C) for 24 hours, as well as long-term storage at temperatures as low as −90°C for up to 32 months. The leech was also capable of enduring repeated freeze-thaw cycles in the temperature range 20°C to −100°C and then back to 20°C. The results demonstrated that the novel cryotolerance mechanisms employed by O. jantseanus enable the leech to withstand a wider range of temperatures than those reported previously for cryobiotic organisms. We anticipate that the mechanism for the observed tolerance to freezing and thawing in O. jantseanus will prove useful for future studies of cryopreservation.  相似文献   

16.
The activity of cytidine 5′-diphosphate (CDP) choline: 1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) in developing soybean (Glycine max L. var Williams 82) seeds was 3 to 5 times higher in cotyledons grown at 20°C than in those grown at 35°C. Some characteristics of the enzyme from cotyledons cultured at 20 and 35°C were compared. In preparations from both growth temperatures, the enzyme showed a pH optimum of 7, Km of 7.0 micromolar for CDP-choline, and an optimum assay temperature of 45°C. Both enzyme preparations were stimulated by increasing concentrations of Mg2+ or Mn2+, up to 10 millimolar and 50 micromolar, respectively, though Mn2+ produced lower activities than Mg2+. Enzymes from both 20 and 35°C show the same specificity for exogenous diacylglycerol. No metabolic effectors were detected by addition of heat treated extracts to the assay mixture. The above findings suggest that the higher enzyme activity at 20°C can be attributed to a higher level of the enzyme rather than to the involvement of isozymes or metabolic effectors. Enzyme activity decreased rapidly during culture at 35°C, indicating a rapid turnover of the enzyme. The level of temperature modulation was found to be a function of seed developmental stage.  相似文献   

17.
1. Most wild stocks of Drosophila melanogaster can be bred indefinitely on banana agar at a temperature of 31°C. There is no relation between the geographical origin of these stocks and their ability to tolerate this temperature. 2. A single wild stock has been found which will breed for only one generation at temperatures above 29°C. The offspring hatched at 31°C. will breed normally at 24°C. This difference from other wild stocks is apparently genetic, but its genetic basis has not yet been worked out. 3. The mutant stocks of D. melanogaster tested by us will breed for only one generation at 31°C. and their offspring at this temperature are also fertile at 24°C. This condition is apparently a physiological effect of the presence of any of the mutant genes in a homozygous condition. 4. Similar tests indicate that wild stocks of D. virilis and Chymomyza procnemis will breed at 31°C., while D. simulans, D. immigrans, and D. funebris will not. The last two species are northern forms not commonly found in the tropics. 5. Both male and female flies from mutant stocks hatched at 31°C. produce offspring at this temperature if mated to flies hatched at 24°C. Their germ cells are therefore capable of development, and the cause of their failure to develop at 31°C. when inbred must lie either in the failure of the germ cells to reach each other or in the fertilization process itself.  相似文献   

18.
Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, Timm) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased Timm, testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient.  相似文献   

19.
We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16–35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g−1 h−1 for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution.  相似文献   

20.
Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.

Live cell imaging of plants exposed to different heat stresses provides a temporal framework of meiosis at high temperatures in wild-type and mutants for several meiotic recombination factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号