首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
M?bius syndrome is classically characterized by bilateral facial nerve and abducens nerve paralysis in combination with limb defects. In the past 110 years, physicians diagnosed children as having the syndrome on the basis of heterogeneity of symptoms and used the term "M?bius syndrome" or "M?bius-like syndrome" for patients with multiple cranial nerve involvement. The cause and the exact pathogenesis of the syndrome still elude understanding. Genetic work-ups, radiological findings, and data from autopsies differ in their approaches and their findings of the basic causes of M?bius syndrome. In the international literature, about 301 case reports are found scattered through the past century. The appearance of the facial deformity is easy to recognize, because the M?bius patient is impaired in his or her ability to communicate nonverbally. Despite ophthalmologic problems, it is the search for a smile that brings these patients to the reconstructive surgeon. Over the past 100 years, surgical efforts attempted to improve the mask-like appearance by static and dynamic procedures, usually local muscle transpositions. Today, combinations of microsurgical procedures and aesthetic techniques are being used to restore some movement to the expressionless face of these patients by nerve and muscle transplantation. This article discusses the heterogeneity of M?bius syndrome, advocates a new classification system, presents the clinical findings of 42 patients who were seen and examined in consultation, and discusses the surgical management of 20 patients who underwent dynamic restorative microsurgery. Exemplary cases illustrating the preoperative work-up regimen and possible outcomes are reported.  相似文献   

2.
The present study concerns the properties for binding of human plasma and extracellular matrix proteins and the relationship between M3 and M23 molecules. Here, it is demonstrated that M23 protein shows a multiple binding to fibrinogen (FG), fibronectin (FN), human serum albumin (HSA), immunoglobulin G (IgG), kininogen, and collagen type I (CI) in Western blot analysis. Some sets of truncated-recombinant M3 or M23 protein fragments were assayed for their capacity to bind FN, FG, IgG, HSA, and CI. The HSA binding activity resided in the C-repeat region of M3 protein, whereas fibrinogen-binding activity resided in the A-repeat region. The FG, FN, and IgG binding sites were mapped to the N-terminal portion of M23 protein, whereas HSA binding was localized in the B-repeat domain, which has homology with C-repeat domain in M3 molecule. Therefore, it is concluded that the FN, FG, and IgG binding regions in the M3 and M23 proteins are quite dissimilar at the amino acid sequence level, whereas HSA binding is localized to the conserved C-repeat domain in the M3 and M23 proteins.  相似文献   

3.
The outbreak of SARS in 2003, MERS in 2012, and now COVID-19 in 2019 has demonstrated that Coronaviruses are capable of causing primary lethal infections in humans, and the pandemic is now a global concern. The COVID-19 belongs to the beta coronavirus family encoding 29 proteins, of which four are structural, the Spike, Membrane, Envelope, and Nucleocapsid proteins. Here we have analyzed and compared the Membrane (M) and Envelope (E) proteins of COVID-19 and MERS with SARS and Bat viruses. The sequence analysis of conserved regions of both E and M proteins revealed that many regions of COVID-19 are similar to Bat and SARS viruses while the MERS virus showed variations. The essential binding motifs found in SARS appeared in COVID-19. Besides, the M protein of COVID-19 showed a distinct serine phosphorylation site in the C-terminal domain, which looked like a catalytic triad seen in serine proteases. A Dileucine motif occurred many times in the sequence of the M protein of all the four viruses compared. Concerning the structural part, the COVID-19 E protein showed more similarity to Bat while MERS shared similarity with the SARS virus. The M protein of both COVID-19 and MERS displayed variations in the structure. The interaction between M and E proteins was also studied to know the additional binding regions. Our study highlights the critical motifs and structural regions to be considered for further research to design better inhibitors for the infection caused by these viruses.  相似文献   

4.
The M3 Serotype of Group A Streptococcus (GAS) is one of the three most frequent serotypes associated with severe invasive GAS infections, such as necrotizing fasciitis, in the United States and other industrialized countries. The basis for this association and hypervirulence of invasive serotype M3 GAS is not fully understood. In this study, the sequenced serotype M3 strain, MGAS315, and serotype M28 strain, MGAS6180, were characterized in parallel to determine whether contemporary M3 GAS has a higher capacity to invade soft tissues than M28 GAS. In subcutaneous infection, MGAS315 invaded almost the whole skin, inhibited neutrophil recruitment and TNF-α production, and was lethal in subcutaneous infection of mice, whereas MGAS6180 did not invade skin, induced robust neutrophil infiltration and TNF-α production, and failed to kill mice. In contrast to MGAS6180, MGAS315 had covS G1370T mutation. Either replacement of the covS 1370T gene with wild-type covS in MGAS315 chromosome or in trans expression of wild-type covS in MGAS315 reduced expression of CovRS-controlled virulence genes hasA, spyCEP, and sse by >10 fold. MGAS315 covS wt lost the capacity to extensively invade skin and to inhibit neutrophil recruitment and had attenuated virulence, indicating that the covS G1370T mutation critically contribute to the hypervirulence of MGAS315. Under the background of functional CovRS, MGAS315 covS wt still caused greater lesions than MGAS6180, and, consistently under the background of covS deletion, MGAS6180 ΔcovS caused smaller lesions than MGAS315 ΔcovS. Thus, contemporary invasive M3 GAS has a higher capacity to evade neutrophil and TNF-α responses and to invade soft tissue than M28 GAS and that this skin-invading capacity of M3 GAS is maximized by natural CovRS mutations. These findings enhance our understanding of the basis for the frequent association of M3 GAS with necrotizing fasciitis.  相似文献   

5.
6.
Summary Starting from field investigations and experiments on mimetic butterfly populations a model for two mimetic species is developed. The model comprises various features such as the growth rates and carrying capacities of the two species, their unpalatability to predators, the recruitment and the training of the predators and, most important, the similarity of the two mimetic species. The model ranges from pure Batesian to pure Müllerian mimicry over a spectrum of possible cases. The mimetic gain is introduced as the relative increase in equilibrium density in a mimetic situation as compared to a situation where mimicry is not present. The dependence of this quantity on parameters as growth rate, carrying capacity, unpalatability, and similarity is investigated using numerical methods.  相似文献   

7.
Benzoyl-CoA reductase catalyzes the two-electron transfer from a reduced ferredoxin to the aromatic ring of benzoyl-CoA; this reaction is coupled to stoichiometrical ATP hydrolysis. A very low reduction potential (less than -1 V) is required for the first electron transfer to the aromatic ring. In this work the nature of the redox centers of purified benzoyl-CoA reductase from Thauera aromatica was studied by EPR and M?ssbauer spectroscopy. The results obtained indicated the presence of three [4Fe-4S] clusters. Redox titration studies revealed that the reduction potentials of all three clusters were below -500 mV. The previously reported S = 7/2 state of the enzyme during benzoyl-CoA-independent ATPase activity (Boll, M., Albracht, S. J. P., and Fuchs, G. (1997) Eur. J. Biochem. 244, 840-851) was confirmed by M?ssbauer spectroscopy. Inactivation by oxygen was associated with the irreversible conversion of part of the [4Fe-4S] clusters to [3Fe-4S] clusters. Acetylene stimulated the benzoyl-CoA-independent ATPase activity and induced novel EPR signals with g(av) >2. The presence of simple cubane clusters in benzoyl-CoA reductase as the sole redox-active metal centers demonstrates novel aspects of [4Fe-4S] clusters since they adopt the role of elemental sodium or lithium which are used as electron donors in the analogous chemical Birch reduction of aromatic rings.  相似文献   

8.
9.
10.
This article is an exploratory piece which introduces an argument that a new Māori-science discourse for freshwater has emerged in New Zealand. At the heart of the discourse is the Māori word mātauranga. Drawing on my attendance at a recent Māori water symposium, this work will track the shifting power relationships and fluid boundaries of groups of people with interests in science and claims to freshwater resources. With a focus on the words and language used by Ngai Tahu tribal leaders and natural scientists attending the symposium, this work asks what role the politics of language and discourse plays in transforming identities, power relations and sociopolitical hierarchies. A major focus of this article is the shifting relationships between identity, knowledge and power. Its thesis is that subtle shifts in discourse reflect wider social and symbolic struggles.  相似文献   

11.
12.
Müller glia (MG) dedifferentiation into a cycling population of multipotent progenitors is crucial to zebrafish retina regeneration. The mechanisms underlying MG dedifferentiation are unknown. Here we report that heparin-binding epidermal-like growth factor (HB-EGF) is rapidly induced in MG residing at the injury site and that pro-HB-EGF ectodomain shedding is necessary for retina regeneration. Remarkably, HB-EGF stimulates the formation of multipotent MG-derived progenitors in the uninjured retina. We show that HB-EGF mediates its effects via an EGFR/MAPK signal transduction cascade that regulates the expression of regeneration-associated genes, like ascl1a and pax6(b). We also uncover an HB-EGF/Ascl1a/Notch/hb-egf(a)-signaling loop that helps define the zone of injury-responsive MG. Finally, we show that HB-EGF acts upstream of the Wnt/β-catenin-signaling cascade that controls progenitor proliferation. These data provide a link between extracellular signaling and regeneration-associated gene expression in the injured retina and suggest strategies for stimulating retina regeneration in mammals.  相似文献   

13.
14.
M?ssbauer parameters of putidaredoxin and its selenium analog   总被引:4,自引:0,他引:4  
  相似文献   

15.
During embryogenesis normal male phenotypic development requires the action of Müllerian Inhibiting Substance (MIS) which is secreted by Sertoli cells of the fetal testis. As testes differentiate in genetic (XY) males, they produce MIS which causes regression of the Müllerian ducts, the anlagen of the female reproductive tract. Soon thereafter, testicular androgens stimulate the Wolffian ducts. In females, on the other hand, MIS is not produced by grandulosa cells until after birth, before which, estrogens induce Müllerian duct development, while the Wolffian ducts passively atrophy in the absence of androgenic stimulation. High serum MIS levels in males are maintained until puberty, whereupon they fall to baseline levels. In females MIS is undetectable in serum until the peripubertal period when values approach the baseline levels of males. This distinct pattern of sexual and ontogenic expression presupposes and requires tight regulation. MIS may play a role in gonadal function and development. Our laboratory has shown that an important role for ovarian MIS is to inhibit oocyte meiosis, perhaps providing maximal oocyte maturation prior to selection for ovulation and subsequent fertilization. Furthermore, Vigier et al. (Development 100:43-55) have recently obtained evidence that MIS may influence testicular differentiation, coincident with inhibition of aromatase activity. Current structure-function studies demonstrate that MIS, like other growth regulators in its protein family, requires proteolytic cleavage to exhibit full biological activity. MIS can be inhibited by epidermal growth factor. This antagonism, which is common to all MIS functions so far investigated, is associated with inhibition of EGF receptor autophosphorylation. We have provided evidence that bovine MIS can inhibit female reproductive tract tumors arising in adults.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
Zhao RY  Elder RT 《Cell research》2005,15(3):143-149
Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15 (Tyrl5) on Cdc2, which is phosphorylated by Weel kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two wellcharacterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-Ⅰ) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.  相似文献   

19.
《Inorganica chimica acta》1986,119(2):171-176
The acyl derivatives of 3,3′,4,4′-tetramethyldi- phosphaferrocene (TMDPF) have been examined in strong acids by 57Fe Mössbauer, 1H and 31P NMR spectroscopy. As with ferrocenyl ketones, protonation was found to occur at the keto function, the diphosphaferrocenyl ketones having comparable or, in some cases, reduced basicities compared to ferrocenyl ketones. [p ]Trends in the 57Fe Mössbauer parameters are not as additive as in ferrocene systems due to steric crowding. The keto derivatives show some unusual deuteriation patterns and these have been compared with those of ferrocenyl ketones. The 13C spectra of several derivatives have been reported to illustrate the rather complex stereochemistry found in these derivatives.  相似文献   

20.
The cobalt(III) complexes Et4N[Co(L1)2] and [Co(L2)3] [H2L1 is 2,6-bis(N-(2-pyridyl)carbamoyl)pyridine and HL2 is 2-(N-(2-pyridyl)carbamoyl)pyridine] were used as the building blocks for preparing a series of {M2+?CCo3+?CM2+} (where M?is?Zn, Cd, or Hg) and {Co3+?CM2+} (where M?is?Zn or Cd) heterometallic complexes. All heterometallic complexes were characterized using a host of spectroscopic methods (IR, NMR, and UV/vis spectroscopy and mass spectrometry), elemental analysis, and conductivity measurements. One of the representative compounds, {Hg2+?CCo3+?CHg2+}, was characterized crystallographically, and it was revealed that two Hg(II) ions are coordinated within the clefts created by the building block Et4N[Co(L1)2]. The results of screening for anticancer activity against the human brain tumor U87 cell line and antibacterial activity against a range of resistant (Pseudomonas aeruginosa and Proteus vulgaris) as well as standard (Staphylococcus aureus SA 96, P. aeruginosa MTCC 1688, Klebsiella planticola MTCC 2272, and Escherichia coli T7) bacterial strains indicate promising activities. Notably, the observed activity was found to vary with the type of building block and the secondary metal ion present in the heterometallic complex. Treatment-induced cell death [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT and macrocolony assay), growth inhibition, cytogenetic damage, cell cycle delay, and apoptosis were studied as the parameters for cellular response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号