首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dengue virus (DENV) is a member of the Flavivirus genus of positive-sense RNA viruses. DENV RNA replication requires cyclization of the viral genome mediated by two pairs of complementary sequences in the 5′ and 3′ ends, designated 5′ and 3′ cyclization sequences (5′-3′ CS) and the 5′ and 3′ upstream of AUG region (5′-3′ UAR). Here, we demonstrate that another stretch of six nucleotides in the 5′ end is involved in DENV replication and possibly genome cyclization. This new sequence is located downstream of the AUG, designated the 5′ downstream AUG region (5′ DAR); the motif predicted to be complementary in the 3′ end is termed the 3′ DAR. In addition to the UAR, CS and DAR motifs, two other RNA elements are located at the 5′ end of the viral RNA: the 5′ stem-loop A (5′ SLA) interacts with the viral RNA-dependent RNA polymerase and promotes RNA synthesis, and a stem-loop in the coding region named cHP is involved in translation start site selection as well as RNA replication. We analyzed the interplay of these 5′ RNA elements in relation to RNA replication, and our data indicate that two separate functional units are formed; one consists of the SLA, and the other includes the UAR, DAR, cHP, and CS elements. The SLA must be located at the 5′ end of the genome, whereas the position of the second unit is more flexible. We also show that the UAR, DAR, cHP, and CS must act in concert and therefore likely function together to form the tertiary RNA structure of the circularized DENV genome.Dengue virus (DENV), a member of the Flaviviridae family, is a human pathogen causing dengue fever, the most common mosquito-borne viral disease in humans. The virus has become a major international public health concern, with 3 billion people at risk for infection and an estimated 50 million dengue cases worldwide every year (28). Neither specific antiviral therapies nor licensed vaccines are available, and the biology of the virus is poorly understood.DENV is a small enveloped virus containing a positive-stranded RNA genome with a length of approximately 10.7 kb. The virus encodes one large polyprotein that is co- and posttranslationally cleaved into 10 viral proteins. The structural proteins C, prM/M, and E are located in the N terminus, followed by the nonstructural proteins NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (6, 10). NS5, the largest of the viral proteins, functions as an RNA-dependent RNA polymerase (RdRP) (29). The coding region is flanked at both ends by untranslated regions (UTR). The 5′ end has a type I cap structure (m7GpppAmp) mediating cap-dependent translation, but the virus can switch to a noncanonical translation mechanism under conditions in which translation factors are limiting (13). Cellular mRNAs are known to circularize via a protein-protein bridge between eIF4G and eIF4E (the cap binding complex) at the 5′ end and the poly(A) binding protein (PABP) at the 3′ end, enhancing translation efficiency. Despite the fact that the DENV 3′ UTR lacks a poly(A) tail, recent findings demonstrated binding of PABP to the 3′ UTR and an effect on RNA translation, suggesting a similar mechanism (12, 26).In addition to a presumed protein-mediated genome circularization regulating viral translation, an RNA-RNA-based 5′ and 3′ (5′-3′) end interaction, which can occur in the absence of proteins, leads to circularization of the viral genome (1, 3, 4, 18, 20, 30, 33, 34). This cyclization of the genome is necessary for viral RNA replication, and thus far, two complementary sequences at the 5′ and 3′ ends have been identified (3). The first are the cyclization sequences (CS) present in the capsid-coding region at the 5′ end (5′ CS) and upstream of the 3′ stem-loop (3′ SL) in the 3′ UTR (3′ CS) (2, 4, 18, 20, 30). A second sequence, known as the 5′ upstream AUG region (5′ UAR) element in the 5′ UTR, base pairs with its complementary 3′ UAR counterpart, which is located at the bottom part of 3′ SL (1, 4, 30). Recently, the structure of the 5′ end of the DENV genome hybridized to the 3′ end was determined in solution (25), confirming previous computer-predicted structures for genome cyclization (4, 20, 30). Besides the base pairing between 5′-3′ UAR and 5′-3′ CS sequences, a third stretch of nucleotides was identified to form a double-stranded (ds) region between the 5′ and 3′ ends.In addition to RNA sequences involved in 5′-3′-end interactions that are necessary for cyclization, the 5′ end of the viral genome harbors at least two more functional RNA elements, the stem-loop A (SLA) and capsid-coding region hairpin (cHP). The SLA consists of the first 70 nucleotides (nt) of the genome, forming a stable stem-loop structure. This structure has been confirmed in several studies and identified as a promoter element for RNA synthesis that recruits the viral RdRp NS5 (16, 22). Once NS5 is bound to the SLA at the 5′ end, it is believed to be delivered to the initiation site of minus-strand RNA synthesis at the 3′ end via 5′-3′ RNA-RNA circularization. In addition, a short poly(U) tract located immediately downstream of SLA has been shown to be necessary for RNA synthesis, although it is not involved in genome circularization (22). Finally, the cHP element resides within the capsid-coding region; it directs start codon selection and is essential for RNA replication (8, 9). The cHP structure is more important than its primary sequence. For start codon selection, it is believed that the cHP stalls the scanning initiation complex over the first AUG, favoring its recognition (9). In the case of RNA replication, the cHP likely stabilizes the overall 5′-3′ panhandle structure or participates in recruitment of factors associated with the replicase machinery (8).In this study, we demonstrate that in addition to the 5′ CS and 5′ UAR sequences, a third stretch of nucleotides in the 5′ end is required for RNA replication and appears to be involved in genome circularization. This new motif is located downstream of the AUG and was therefore designated the downstream AUG region (5′ DAR) element, with the predicted counterpart in the 3′ end designated the 3′ DAR. Our results indicate that the 5′ DAR modulates RNA-RNA interaction and RNA replication, and restoring complementarity between the 5′ DAR and 3′ DAR rescues detrimental effects caused by mutations in the 5′ DAR on genome circularization and RNA replication. Although the role of the predicted 3′ DAR counterpart is less conclusive, it may serve to make other structures and sequences in the 3′ end available for 5′-3′ RNA-RNA interaction to facilitate the replication-competent conformation of the DENV genome.Furthermore, we analyzed the functional interplay of RNA elements in the viral 5′ end, showing that two separate units are formed during replication. The first consists of the SLA, and it must be located at the very 5′ end of the genome. The second unit includes UAR, DAR, cHP, and CS elements, and the positional requirements are more flexible within the DENV RNA 5′ terminus. However, all four elements in the second unit must act in concert, forming a functional tertiary RNA structure of the circularized viral genome.  相似文献   

2.
The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis, replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are translated via an internal ribosome entry site (IRES) located at the 5′ UTR, which acts as a scaffold for recruiting multiple protein factors. Replication of the viral genome is initiated at the 3′ UTR. Bioinformatics methods have identified other structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform structure at the 3′ end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 3′ end of the genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range RNA–RNA interaction between the 5′ and 3′ ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 5′–3′ end bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.  相似文献   

3.
4.
A method for the isolation of segments of any desired length from the 5′ end of retrovirus RNA has been tested. The method is based on selection of 5′-specific segments by hybridizing suitably fragmented genomic (35 S) RNA to mercurated strong stop cDNA followed by chromatography on sulfhydryl-agarose. The method has been shown to be effective for Akv viral RNA by observing the T1 oligonucleotide fingerprints of a 5′-enriched fraction. This fingerprint pattern is of lower complexity than that of total 35 S RNA, contains oligonucleotide spots that have previously been assigned as 5′ specific by conventional fingerprinting methods, and does not overlap with the pattern from 3′-specific RNA.  相似文献   

5.
6.
RNA Double Helix and the Evolution of the 3′,5′ Linkage   总被引:2,自引:0,他引:2  
I WISH to call attention to a simple but important structural feature of the RNA double helix1, the implications of which have not been noticed previously and which seems to provide an evolutionary advantage for the exclusive use of the 3′, 5′-internucleotide linkage in naturally occurring RNA. A related observation can account for the production of the wrong linkage (2′,5′) in non-enzymatic polymerization of template-bound adenosine-2′,3′-cyclic phosphate2.  相似文献   

7.
8.
Surface plasmon resonance was used to investigate two previously described interactions analyzed by reverse genetics and complementation mutation experiments, involving 5BSL3.2, a stem–loop located in the NS5B coding region of HCV. 5BSL3.2 was immobilized on a sensor chip by streptavidin-biotin coupling, and its interaction either with the SL2 stem–loop of the 3′ end or with an upstream sequence centered on nucleotide 9110 (referred to as Seq9110) was monitored in real-time. In contrast with previous results obtained by NMR assays with the same short RNA sequences that we used or SHAPE analysis with longer RNAs, we demonstrate that recognition between 5BSL3.2 and SL2 can occur in solution through a kissing-loop interaction. We show that recognition between Seq9110 and the internal loop of 5BSL3.2 does not prevent binding of SL2 on the apical loop of 5BSL3.2 and does not influence the rate constants of the SL2-5BSL3.2 complex. Therefore, the two binding sites of 5BSL3.2, the apical and internal loops, are structurally independent and both interactions can coexist. We finally show that the stem–loop SL2 is a highly dynamic RNA motif that fluctuates between at least two conformations: One is able to hybridize with 5BSL3.2 through loop–loop interaction, and the other one is capable of self-associating in the absence of protein, reinforcing the hypothesis of SL2 being a dimerization sequence. This result suggests also that the conformational dynamics of SL2 could play a crucial role for controlling the destiny of the genomic RNA.  相似文献   

9.
Abstract

A series of 3′-substituted 3′-amino-3′-deoxyadenosine analogues were synthesized and subsequently tested against the human malaria parasite Plasmodium falciparum in vitro. Several amongst them displayed pronounced antiplasmodial activities.  相似文献   

10.
The 3?? end was exactly mapped for has-mir-30a-like artificial human microRNAs that specifically recognize the mRNA of the aml1/eto fusion oncogene. The results indicated that the intracellular microRNA pool was heterogeneous in linear size relative to the 3?? end, which is necessary to consider in designing and using artificial microRNAs specific for mRNAs of other genes.  相似文献   

11.
In order to study the genealogical relationships among four groups (I to IV) of RNA coliphages, we sequenced 200 to 260 nucleotides from the 3′ termini of 14 phage RNAs according to the method of Sanger et al. (1977), and compared the results. It was found that the sequences of phage RNAs in the same group were extremely homologous (about 90%). On the other hand, when the sequences were compared with those from other groups, they were seen to be only about 50 to 60% homologous between group I and group II, and about 50% homologous between group III and group IV. In other combinations, such as groups I (or II) and III, and groups I (or II) and IV, however, the extent of homology was small. Furthermore, the sequences up to 30 residues from the 3′ end were found to be about 90% homologous between groups I and II, and between groups III and IV.These results confirm our previous findings, that the sequences located in the proximity of the 3′ end of phage RNA in the same group were well-conserved (Inokuchi et al., 1979), and that close relationships exist between groups I and II, and between groups III and IV (Furuse et al., 1979).  相似文献   

12.
The specific recognition by proteins of the 5′ and 3′ ends of RNA molecules is an important facet of many cellular processes, including RNA maturation, regulation of translation initiation and control of gene expression by degradation and RNA interference. The aim of this review is to survey recent structural analyses of protein binding domains that specifically bind to the extreme 5′ or 3′ termini of RNA. For reasons of space and because their interactions are also governed by catalytic considerations, we have excluded enzymes that modify the 5′ and 3′ extremities of RNA. It is clear that there is enormous structural diversity among the proteins that have evolved to bind to the ends of RNA molecules. Moreover, they commonly exhibit conformational flexibility that appears to be important for binding and regulation of the interaction. This flexibility has sometimes complicated the interpretation of structural results and presents significant challenges for future investigations.  相似文献   

13.
RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme.  相似文献   

14.
15.
Kinetic methods for studying the reactions of the “general” fatty acyl CoA dehydrogenase under three sets of substrate and enzyme concentration conditions have been developed. The reaction of butyryl-CoA and electron transfer flavoprotein (ETF) can be studied either under steady-state conditions with enzyme at catalytic concentration or under single-turnover conditions with enzyme in excess. Under the latter conditions, acyl-CoA dehydrogenase acts both as a catalyst and an ultimate electron-transfer acceptor. The reductive half-reaction of butyryl-CoA and enzyme can also be studied in a separate kinetic experiment. Comparison of the pH dependences of the rate constants and isotope effects of the steady-state reaction of butyryl-CoA and ETF with the same parameters for the reductive half-reaction is consistent with a mechanism involving transfer of electrons from butyryl-CoA to ETF within a ternary complex. An alternative mechanism in which the reductive half-reaction takes place prior to the binding and reaction of ETF seems unlikely because the pH 8.5 isotope effect on the reductive half-reaction is much larger than that on the complete reaction in spite of the fact that the rates of the reactions are comparable. The pH dependence of the Km for substrate and KI for inhibitor is consistent with a mechanism for transfer of electrons within the ternary complex which involves protonation of the C group of substrates. The protonation labilizes the C-2 proton and base catalysis of the removal of the C-2 proton results in the production of the active enzyme-substrate species, namely the C-2 anion of substrate.  相似文献   

16.
Xiao  Ming  Lu  Wenwei  Chen  Jun  Wang  Yujing  Zhen  Yamei  Chen  Jiakuan  Li  Bo 《Molecular Biology》2004,38(2):289-297
Classical swine fever virus (CSFV) is the causative agent of swine fever, which represents an economically important disease in hogs. We previously made a prediction about the recognition sites of replication initiation of CSFV by using the information content method, and it was predicted that the 21 nucleotides located at the 3 end of the CSFV genome 3UTR were essential to CSFV replication. In this paper, we experimentally studied these 21 nucleotides by site-directed mutagenesis. It was found that the 3UTRs with the 21 nucleotides could initiate RNA synthesis, while the 3UTRs without the 21 nucleotides could not. The 21 nucleotides alone, without the rest of 3UTR, were able to initiate RNA synthesis, though with a slump. Most probably the 21 nucleotides were the necessary site for the CSFV genome replication initiation, and the elements required for sufficient RNA synthesis were in the other part of 3UTR. It was assumed that the CSFV replicase bound to the site and initiated the replication of the CSFV genome. In the 21 nucleotides, it was found that the mutation of position 216 and destruction of the 3 terminus in the 3UTR precluded initiation of RNA synthesis, where the mutation of position 212 did not affect the capacity for initiation of RNA synthesis but attenuated the synthesis of RNA. Among the four mutants of 3UTR at position 219, three proved inactive and one partly active in initiating RNA synthesis. Therefore, it could be concluded that T216 was the most important while T212 was the least important, and that G219 and C228 were also important for RNA synthesis.  相似文献   

17.
18.
19.
20.
RNA structures present throughout RNA virus genomes serve as scaffolds to organize multiple factors involved in the initiation of RNA synthesis. Several of these RNA elements play multiple roles in the RNA replication pathway. An RNA structure formed around the 5′- end of the poliovirus genomic RNA has been implicated in the initiation of both negative- and positive-strand RNA synthesis. Dissecting the roles of these multifunctional elements is usually hindered by the interdependent nature of the viral replication processes and often pleiotropic effects of mutations. Here, we describe a novel approach to examine RNA elements with multiple roles. Our approach relies on the duplication of the RNA structure so that one copy is dedicated to the initiation of negative-strand RNA synthesis, while the other mediates positive-strand synthesis. This allows us to study the function of the element in promoting positive-strand RNA synthesis, independently of its function in negative-strand initiation. Using this approach, we demonstrate that the entire 5′-end RNA structure that forms on the positive-strand is required for initiation of new positive-strand RNAs. Also required to initiate positive-strand RNA synthesis are the binding sites for the viral polymerase precursor, 3CD, and the host factor, PCBP. Furthermore, we identify specific nucleotide sequences within “stem a” that are essential for the initiation of positive-strand RNA synthesis. These findings provide direct evidence for a trans-initiation model, in which binding of proteins to internal sequences of a pre-existing positive-strand RNA affects the synthesis of subsequent copies of that RNA, most likely by organizing replication factors around the initiation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号