首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine effects of government spending on postdoctoral researchers’ (postdocs) productivity in biomedical sciences, the largest population of postdocs in the US. We analyze changes in the productivity of postdocs before and after the US government’s 1997 decision to increase NIH funding. In the first round of analysis, we find that more government spending has resulted in longer postdoc careers. We see no significant changes in researchers’ productivity in terms of publication and conference presentations. However, when the population is segmented by citizenship, we find that the effects are heterogeneous; US citizens stay longer in postdoc positions with no change in publications and, in contrast, international permanent residents (green card holders) produce more conference papers and publications without significant changes in postdoc duration. Possible explanations and policy implications of the analysis are discussed.  相似文献   

2.
Despite the scientific community''s overwhelming support for the European Research Council, many grant recipients are irked about red tapeThere is one thing that most European researchers agree on: B stands for Brussels and bureaucracy. Research funding from the European Commission (EC), which distributes EU money, is accompanied by strict accountability and auditing rules in order to ensure that European taxpayers'' money is not wasted. All disbursements are treated the same, whether subsidies to farmers or grants to university researchers. However, the creation of the European Research Council (ERC) in 2007 as a new EU funding agency for basic research created high hopes among scientists for a reduced bureaucratic burden.… many researchers who have received ERC funding have been angered with accounting rules inherited from the EC''s Framework Programmes…ERC has, indeed, been a breath of fresh air to European-level research funding as it distributes substantial grants based only on the excellence of the proposal and has been overwhelmingly supported by the scientific community. Nevertheless, many researchers who have received ERC funding have been angered with accounting rules inherited from the EC''s Framework Programmes, and which seem impossible to change. In particular, a requirement to fill out time sheets to demonstrate that scientists spend an appropriate amount of time working on the project for which they received their ERC grant has triggered protests over the paperwork (Jacobs, 2009).Luis Serrano, Coordinator of the Systems Biology Programme at the Centre for Genomic Regulation in Barcelona, Spain, and recipient of a €2 million ERC Advanced Investigator Grant for five years, said the requirement of keeping time sheets is at best a waste of time and worst an insult to the high-level researchers. “Time sheets do not make much sense, to be honest. If you want to cheat, you can always cheat,” he said. He said other grants he receives from the Spanish government and the Human Frontier Science Programme do not require time sheets.Complaints by academic researchers about the creeping bureaucratization of research are not confined to the old continent (see Opinion by Paul van Helden, page 648). As most research, as well as universities and research institutes, is now funded by public agencies using taxpayers'' money, governments and regulators feel to be under pressure to make sure that the funds are not wasted or misappropriated. Yet, the USA and the EU have taken different approaches to making sure that scientists use public money correctly. In the USA, misappropriation of public money is considered a criminal offence that can be penalized by a ban on receiving public funds, fines and even jail time; in fact, a few scientists in the USA have gone to prison.By contrast, the EU puts the onus on controlling how public money is spent upfront. Research funding under the EU''s Framework Programmes requires clearly spelt out deliverables and milestones, and requires researchers to adhere to strict accountability and auditing rules. Not surprisingly, this comes with an administrative burden that has raised the ire of many scientists who feel that their time is better spent doing research. Serrano said in a major research centre such as the CRG, the administration could minimize the paper burden. “My administration prepares them for me and I go one, two, three, four, five and I do all of them. You can even have a machine sign for you,” he commented. “But I can imagine researchers who don''t have the administrative help, this can take up a significant amount of time.” For ERC grants, which by definition are for ‘blue-skies'' research and thus do not have milestones or deliverables, such paperwork is clearly not needed.Complaints by academic researchers about the creeping bureaucratization of research are not confined to the old continentNot everyone is as critical as Serrano though. Vincent Savolainen at the Division of Biology at Imperial College London, UK, and recipient of a €2.5 million, five-year ERC Advanced Investigator Grant, said, “Everything from the European Commission always comes with time sheets, and ERC is part of the European Commission.” Still, he felt it was very confusing to track time spent on individual grants for Principal Investigators such as him. “It is a little bit ridiculous but I guess there are places where people may abuse the system. So I can also see the side of the European Commission,” he said. “It''s not too bad. I can live with doing time sheets every month,” he added. “Still, it would be better if they got rid of it.”Juleen Zierath, an integrative physiologist in the Department of Molecular Medicine at Karolinska Institutet (Stockholm, Sweden), who received a €2.5 million, five-year ERC grant, takes the time sheets in her stride. “If I worked in a company, I would have to fill out a time sheet,” she said. “I''m delighted to have the funding. It''s a real merit. It''s a real honour. It really helps my work. If I have to fill out a time sheet for the privilege of having that amount of funding for five years, it''s not a big issue.”Zierath, a native of Milwaukee (WI, USA) who came to Karolinska for graduate work in 1989, said the ERC''s requirements are certainly “bureaucracy light” compared with the accounting and reporting requirements for more traditional EU funding instruments, such as the ‘Integrated Projects''. “ERC allows you to focus more on the science,” she said. “I don''t take time sheets as a signal that the European Union doesn''t count on us to be doing our work on the project. They have to be able to account for where they''re spending the money somehow and I think it''s okay. I can understand where some people would be really upset about that.”…governments and regulators feel to be under pressure to make sure that the funds are not wasted or misappropriated…The complaints about time sheets and other bureaucratic red tape have caught the attention of high-level scientists and research managers throughout Europe. In March 2009, the EC appointed an outside panel, headed by Vaira Vike-Freiberga, former President of Latvia, to review the ERC''s structures and mechanisms. The panel reported in July last year that the objective of building a world-class institution is not properly served by “undue cumbersome regulations, checks and controls.” Although fraud and mismanagement should be prevented, excessively bureaucratic procedures detract from the mission, and might be counter-productive.Helga Nowotny, President of the ERC, said the agency has to operate within the rules of the EC''s Framework Programme 7, which includes the ERC. She explained that if researchers hold several grants, the EC wants recipients to account for their time. “The Commission and the Rules of Participation of course argue that many of these researchers have more than one grant or they may have other contracts. In order to be accountable, the researchers must tell us how much time they spend on the project. But instead of simply asking if they spent a percentage of time on it, the Commission auditors insist on time sheets. I realize that filling them out has a high symbolic value for a researcher. So, why not leave it to the administration of the host institution?”Particle physicist Ian Halliday, President of the European Science Foundation and a major supporter of the ERC, said that financial irregularities that affected the EU over many years prompted the Commission to tighten its monitoring of cash outlays. “There have been endless scandals over the agricultural subsidies. Wine leaks. Nonexistent olive trees. You name it,” he said. “The Commission''s financial system is designed to cope with that kind of pressure as opposed to trusting the University of Cambridge, for example, which has been there for 800 years or so and has a well-earned reputation by now. That kind of system is applied in every corner of the European Commission. And that is basically what is causing the trouble. But these rules are not appropriate for research.”…financial irregularities that affected the EU over many years prompted the Commission to tighten its monitoring of cash outlaysNowotny is sympathetic and sensitive to the researchers'' complaints, saying that requiring time sheets for researchers sends a message of distrust. “It feels like you''re not trusted. It has this sort of pedantic touch to it,” she said. “If you''ve been recognized for doing this kind of top research, researchers feel, ‘Why bother [with time sheets]?''” But the bureaucratic alternative would not work for the ERC either. This would mean spelling out ‘deliverables'' in advance, which is clearly not possible with frontier research.Moreover, as Halliday pointed out, there is inevitably an element of fiction with time sheets in a research environment. In his area of research, for example, he considers it reasonable to track the hours of a technician fabricating parts of a telescope. But he noted that there is a different dynamic for researchers: “Scientists end up doing their science sitting in their bath at midnight. And you mull over problems and so forth. How do you put that on a time sheet?” Halliday added that one of the original arguments in establishing the ERC was to put it at an arm''s length from the Commission and in particular from financial regulations. But to require scientists to specify what proportion of their neurons are dedicated to a particular project at any hour of the day or night is nonsensical. Nowotny agreed. “The time sheet says I''ve been working on this from 11 in the morning until 6 in the evening or until midnight or whatever. This is not the way frontier research works,” she said.Halliday, who served for seven years as chief executive of the Particle Physics and Astronomy Research Council (Swindon, UK), commented that all governments require accountability. In Great Britain, for instance, much more general accountability rules are applied to grantees, thereby offering a measure of trust. “We were given a lot of latitude. Don''t get me wrong that we allowed fraud, but the system was fit for the purpose of science. If a professor says he''s spending half his time on a certain bit of medical research, let''s say, the government will expect half his salary to show up in the grants he gets from the funding agencies. We believe that if the University of Cambridge says that this guy is spending half his time on this research, then that''s probably right and nobody would get excited if it was 55% or 45%. People would get excited if it was 5%. There are checks and balances at that kind of level, but it''s not at a level of time sheets. It will be checked whether the project has done roughly what it said.”Other funding agencies also take a less bureaucratic approach. Candace Hassall, head of Basic Careers at the Wellcome Trust (London, UK), which funds research to improve human and animal health, said Wellcome''s translation awards have milestones that researchers are expected to meet. But “time sheets are something that the Wellcome Trust hasn''t considered at all. I would be astonished if we would ever consider them. We like to work closely with our researchers, but we don''t require that level of reporting detail,” she said. “We think that such detailed, day-by-day monitoring is actually potentially counterproductive overall. It drives people to be afraid to take risks when risks should be taken.”…to require scientists to specify what proportion of their neurons are dedicated to a particular project at any hour of the day or night is nonsensicalOn the other side of the Atlantic, Jack Dixon, vice president and chief scientific officer at the Howard Hughes Medical Institution (Chevy Chase, MD, USA), who directs Hughes'' investigator programme, said he''d never heard of researchers being asked to keep time sheets: “Researchers filling out time sheets is just something that''s never crossed our minds at the Hughes. I find it sort of goofy if you want to know the truth.”In fact, a system based on trust still works better in the academic worldInstead, Hughes trusts researchers to spend the money according to their needs. “We trust them,” Dixon said. “What we ask each of our scientists to do is devote 75% of their time to research and then we give them 25% of their time which they can use to teach, serve on committees. They can do consulting. They can do a variety of things. Researchers are free to explore.”There is already growing support for eliminating the time sheets and other bureaucratic requirements that come with an ERC grant, and which are obviously just a hangover from the old system. Indeed, there have been complaints, such as reviewers of grant applications having to fax in copies of their passports or identity cards, before being allowed sight of the proposals, said Nowotny. The review panel called on the EC to adapt its rules “based on trust and not suspicion and mistrust” so that the ERC can attain the “full realization of the dream shared by so many Europeans in the academic and policy world as well as in political milieus.”In fact, a system based on trust still works better in the academic world. Hassall commented that lump-sum payments encourage the necessary trust and give researchers a sense of freedom, which is already the principle behind ERC funding. “We think that you have to trust the researcher. Their careers are on the line,” she said. Nowotny hopes ERC will be allowed to take a similar approach to that of the Wellcome Trust, with its grants treated more like “a kind of prize money” than as a contract for services.She sees an opportunity to relax the bureaucratic burden with a scheduled revision of the Rules of Participation but issues a word of caution given that, when it comes to EU money, other players are involved. “We don''t know whether we will succeed in this because it''s up to the finance ministers, not even the research ministers,” she explained. “It''s the finance ministers who decide the rules of participation. If finance ministers agree then the time sheets would be gone.”  相似文献   

3.
The European Research Council (ERC) is the first European funding body set up to support investigator-driven frontier research. Its main aim is to stimulate scientific excellence by supporting and encouraging the very best, truly creative scientists, scholars and engineers to be adventurous and take risks in their research. The scientists should go beyond the established frontiers of knowledge and the boundaries of disciplines. Being 'investigator-driven', or 'bottom-up', in nature, the ERC approach allows researchers to identify new opportunities and directions in any field of research. By challenging Europe's brightest minds, the ERC expects to bring about new and unpredictable scientific and technological discoveries-the kind that can form the basis of new industries, markets and broader social innovations of the future. Ultimately, the ERC aims to make the European research base more prepared to respond to the needs of a knowledge-based society and provide Europe with the capabilities in frontier research necessary to meet global challenges.  相似文献   

4.
The long-awaited European Research Council (ERC), which receives money from the research budget of the European Union and will finance fundamental science for Europe's scientists, has finally been established. With a focus on excellence, calls for both young and experienced scientists and an average budget of \[euro]1 billion per year, the ERC will have the opportunity to give basic research in Europe a significant boost.  相似文献   

5.
Many scientists complain that the current funding situation is dire. Indeed, there has been an overall decline in support in funding for research from the National Institutes of Health and the National Science Foundation. Within the Drosophila field, some of us question how long this funding crunch will last as it demotivates principal investigators and perhaps more importantly affects the long-term career choice of many young scientists. Yet numerous very interesting biological processes and avenues remain to be investigated in Drosophila, and probing questions can be answered fast and efficiently in flies to reveal new biological phenomena. Moreover, Drosophila is an excellent model organism for studies that have translational impact for genetic disease and for other medical implications such as vector-borne illnesses. We would like to promote a better collaboration between Drosophila geneticists/biologists and human geneticists/bioinformaticians/clinicians, as it would benefit both fields and significantly impact the research on human diseases.  相似文献   

6.
Regarding postdocs as disposable labour with limited contracts is damaging for science. Universities need to offer them better career perspectives. Subject Categories: Careers, Science Policy & Publishing

In many academic systems, permanent positions for scientists (“tenure”) are a rare exception. In Germany, 90% of the researchers employed in academia work on temporary contracts, often with less than a year’s duration. Most of the workforce on short‐term contracts are early‐career researchers (ECRs): PhD students, postdocs, or principal investigators aspiring to beome tenured professors. Given the short‐term perspectives and uncertain contract renewals, and because only a small fraction of the ECRs will eventually get a tenured position, planning the future is difficult or even impossible for them. This creates a toxic environment of hypercompetition, perverse incentives, and steep hierarchies underpinning this system, which discourages many highly competent and motivated young scientists who eventually leave in frustration. In the life sciences in particular, decisions about hiring or promotions are often based on indicators such as journal impact factor or the amount of third‐party funding. Such metrics purport to objectively quantify research quality and innovation, but instead, they foster a culture of questionable research practices, selective or non‐reporting, exaggerating the interpretation of results, and an emphasis on quantity over quality. Much has been written about this situation (Alberts et al, 2014), and there is a broad consensus among researchers, research administrators, funders, and learned societies on the need to reform the academic system.
Given the short‐term perspectives and uncertain contract renewals, and because only a small fraction of the ECRs will eventually get a tenured position, planning the future is difficult or even impossible for them.
  相似文献   

7.
Hunter P 《EMBO reports》2010,11(12):924-926
The global response to the credit crunch has varied from belt tightening to spending sprees. Philip Hunter investigates how various countries react to the financial crisis in terms of supporting scientific research.The overall state of biomedical research in the wake of the global financial crisis remains unclear amid growing concern that competition for science funding is compromising the pursuit of research. Such concerns pre-date the credit crunch, but there is a feeling that an increasing amount of time and energy is being wasted in the ongoing scramble for grants, in the face of mounting pressure from funding agencies demanding value for money. Another problem is balancing funding between different fields; while the biomedical sciences have generally fared well, they are increasingly dependent on basic research in physics and chemistry that are in greater jeopardy. This has led to calls for rebalancing funding, in order to ensure the long-term viability of all fields in an increasingly multidisciplinary and collaborative research world.For countries that are cutting funding—such as Spain, Italy and the UK—the immediate priority is to preserve the fundamental research base and avoid a significant drain of expertise, either to rival countries or away from science altogether. This has highlighted the plight of postdoctoral researchers who have traditionally been the first to suffer from funding cuts, partly because they have little immediate impact on on a country''s scientific competitiveness. Postdocs have been the first to go whenever budgets have been cut, according to Richard Frankel, a physicist at California Polytechnic State University in Saint Luis Obispo, who investigates magnetotaxis in bacteria. “In the short term there will be little effect but the long-term effects can be devastating,” he said.…there is a feeling that an increasing amount of time and energy is being wasted in the ongoing scramble for grants, in the face of mounting pressure from funding agencies…According to Peter Stadler, head of a bioinformatics group at the University of Leipzig in Germany, such cuts tend to cause the long-term erosion of a country''s science skills base. “Short-term cuts in science funding translate totally into a brain drain, since they predominantly affect young researchers who are paid from the soft money that is drying up first,” said Stadler. “They either leave science, an irreversible step, or move abroad but do not come back later, because the medium-term effect of cuts is a reduction in career opportunities and fiercer competition giving those already in the system a big advantage.”Even when young researchers are not directly affected, the prevailing culture of short-term funding—which requires ongoing grant applications—can be disruptive, according to Xavier Salvatella, principal investigator in the Laboratory of Molecular Biophysics at the Institute for Research in Biomedicine in Barcelona, Spain. “I do not think the situation is dramatic but too much time is indeed spent writing proposals,” he commented. “Because success rates are decreasing, the time devoted to raise funds to run the lab necessarily needs to increase.”At the University of Adelaide in Australia, Andrew Somogyi, professor of pharmacology, thinks that the situation is serious: “[M]y postdocs would spend about half their time applying for grants.” Somogyi pointed out that the success rate has been declining in Australia, as it has in some other countries. “For ARC [Australian Research Council] the success rate is now close to 20%, which means many excellent projects don''t get funding because the assessment is now so fine cut,” he said.Similar developments have taken place in the USA at both the National Institutes of Health (NIH)—which provides US$16 billion funding per year and the American Cancer Society (ACS), the country''s largest private non-profit funder of cancer research, with a much smaller pot of US$120 million per year. The NIH funded 21% of research proposals submitted to it in 2009, compared with 32% a decade earlier, while the ACS approves only 15% of grant applications, down several percentage points over the past few years.While the NIH is prevented by federal law from allowing observers in to its grant review meetings, the ACS did allow a reporter from Nature to attend one of its sessions on the condition that the names of referees and the applications themselves were not revealed (Powell, 2010). The general finding was that while the review process works well when around 30% of proposals are successful, it tends to break down as the success rate drops, as more arbitrary decisions are made and the risk of strong pitches being rejected increases. This can also discourage the best people from being reviewers because the process becomes more tiring and time-consuming.Even when young researchers are not directly affected, the prevailing culture of short-term funding—which requires ongoing grant applications—can be disruptive…In some countries, funding shortfalls are also leading to the loss of permanent jobs, for example in the UK where finance minister George Osborne announced on October 20 that the science budget would be frozen at £4.6 billion, rather than cut as had been expected. Even so, combined with the cut in funding for universities that was announced on the same day, this raises the prospect of reductions in academic staff numbers, which could affect research projects. This follows several years of increasing funding for UK science. Such uncertainty is damaging, according to Cornelius Gross, deputy head of the mouse biology unit, European Molecular Biology Laboratory in Monterotondo, Italy. “Large fluctuations in funding have been shown to cause damage beyond their direct magnitude as can be seen in the US where the Clinton boom was inevitably followed by a slowdown that led to rapid and extreme tightening of budgets,” he said.Some countries are aware of these dangers and have acted to protect budgets and, in some cases, even increase spending. A report by the OECD argued that countries and companies that boosted research and development spending during the ‘creative destruction'' of an economic downturn tended to gain ground on their competitors and emerge from the crisis in a relatively stronger position (OECD, 2009). This was part of the rationale of the US stimulus package, which was intended to provide an immediate lift to the economy and has been followed by a slight increase in funding. The NIH''s budget is set to increase by $1 billion, or 3% from 2010 to 2011, reaching just over $32 billion. This looks like a real-term increase, since inflation in the USA is now between 1 and 2%. However, there are fears that budgets will soon be cut; even now the small increase at the Federal level is being offset by cuts in state support, according to Mike Seibert, research fellow at the US Department of Energy''s National Renewable Energy Laboratory. “The stimulus funds are disappearing in the US, and the overall budget for science may be facing a correction at the national level as economic, budget, and national debt issues are addressed,” he said. “The states in most cases are suffering their own budget crises and will be cutting back on anything that is not nailed down.”…countries and companies that boosted research and development spending during the ‘creative destruction'' of an economic downturn tended to gain ground on their competitors…In Germany, the overall funding situation is also confused by a split between the Federal and 16 state governments, each of which has its own budget for science. In contrast to many other countries though, both federal and state governments have responded boldly to the credit crisis by increasing the total budget for the DFG (Deutsche Forschungsgemeinschaft)—Germany''s largest research funding agency—to €2.3 billion in 2011. Moreover, total funding for research and education from the BMBF (Federal Ministry for Education and Research) is expected to increase by another 7% from €10.9 billion in 2010 to €11.64 billion, although the overall federal budget is set to shrink by 3.8% under Germany''s austerity measures (Anon, 2010). There have also been increases in funding from non-government sources, such as the Fraunhofer Society, Europe''s largest application-oriented research organization, which has an annual budget of €1.6 billion.The German line has been strongly applauded by the European Union, which since 2007 has channelled its funding for cutting-edge research through the European Research Council (ERC). The ERC''s current budget of €7.5 billion, which runs until 2013, was set in 2007 and negotiations for the next period have not yet begun, but the ERC''s executive agency director Jack Metthey has indicated that it will be increased: “The Commission will firmly sustain in the negotiations the view that research and innovation, central to the Europe 2020 Strategy agreed by the Member States, should be a top budgetary priority.” Metthey also implied that governments cutting funding, as the UK had been planning to do, were making a false economy that would gain only in the short term. “Situations vary at the national level but the European Commission believes that governments should maintain and even increase research and innovation investments during difficult times, because these are pro-growth, anti-crisis investments,” he said.Many other countries have to cope with flat or declining science budgets; some are therefore exploring ways in which to do more with less. In Japan, for instance, money has been concentrated on larger projects and fewer scientists, with the effect of intensifying the grant application process. Since 2002, the total Japanese government budget for science and technology has remained flat at around ¥3,500 billion—or €27 billion at current exchange rates—with a 1% annual decline in university support but increased funding for projects considered to be of high value to the economy. This culminated in March 2010 with the launch of the ¥100 billion (€880 million) programme for World Leading Innovative Research and Development on Science and Technology.But such attempts to make funding more competitive or focus it on specific areas could have unintended side effects on innovation and risk taking. One side effect can be favouring scientists who may be less creative but good at attracting grants, according to Roger Butlin, evolutionary biologist at the University of Sheffield in the UK. “Some productive staff are being targeted because they do not bring in grants, so money is taking precedence over output,” said Butlin. “This is very dangerous if it results in loss of good theoreticians or data specialists, especially as the latter will be a critical group in the coming years.”“Scientists are usually very energetic when they can pursue their own ideas and less so when the research target is too narrowly prescribed”There have been attempts to provide funding for young scientists based entirely on merit, such as the ERC ‘Starting Grant'' for top young researchers, whose budget was increased by 25% to €661 million for 2011. Although they are welcome, such schemes could also backfire unless they are supported by measures to continue supporting the scientists after these early career grants expire, according to Gross. “There are moves to introduce significant funding for young investigators to encourage independence, so called anti-brain-drain grants,” he said. “These are dangerous if provided without later independent positions for these people and a national merit-based funding agency to support their future work.”Such schemes might work better if they are incorporated into longer-term funding programmes that provide some security as well as freedom to expand a project and explore promising side avenues. Butlin cited the Canadian ‘Discovery Grant'' scheme as an example worth adopting elsewhere; it supports ongoing programmes with long-term goals, giving researchers freedom to pursue new lines of investigation, provided that they fit within the overall objective of the project.To some extent the system of ‘open calls''—supported by some European funding agencies—has the same objective, although it might not provide long-term funding. The idea is to allow scientists to manoeuvre within a broad objective, rather than confining them to specific lines of research or ‘thematic calls'', which tend to be highly focused. “The majority of funding should be distributed through open calls, rather than thematic calls,” said Thomas Höfer from the Modeling Research Group at the German Cancer Research Center & BioQuant Center in Heidelberg. “Scientists are usually very energetic when they can pursue their own ideas and less so when the research target is too narrowly prescribed. In my experience as a reviewer at both the national and EU level, open calls are also better at funding high-quality research whereas too narrow thematic calls often result in less coherent proposals.”“Cutting science, and education, is the national equivalent of a farmer eating his ‘seed corn'', and will lead to developing nation status within a generation”Common threads seems to be emerging from the different themes and opinions about funding: budgets should be consistent over time and spread fairly among all disciplines, rather than focused on targeted objectives. They should also be spread across the working lifetime of a scientist rather than being shot in a scatter-gun approach at young researchers. Finally, policies should put a greater emphasis on long-term support for the best scientists and projects, chosen for their merit. Above all, funding policy should reflect the fundamental importance of science to economies, as Seibert concluded: “Cutting science, and education, is the national equivalent of a farmer eating his ‘seed corn'', and will lead to developing nation status within a generation.”  相似文献   

8.
Research needs a balance of risk‐taking in “breakthrough projects” and gradual progress. For building a sustainable knowledge base, it is indispensable to provide support for both. Subject Categories: Careers, Economics, Law & Politics, Science Policy & Publishing

Science is about venturing into the unknown to find unexpected insights and establish new knowledge. Increasingly, academic institutions and funding agencies such as the European Research Council (ERC) explicitly encourage and support scientists to foster risky and hopefully ground‐breaking research. Such incentives are important and have been greatly appreciated by the scientific community. However, the success of the ERC has had its downsides, as other actors in the funding ecosystem have adopted the ERC’s focus on “breakthrough science” and respective notions of scientific excellence. We argue that these tendencies are concerning since disruptive breakthrough innovation is not the only form of innovation in research. While continuous, gradual innovation is often taken for granted, it could become endangered in a research and funding ecosystem that places ever higher value on breakthrough science. This is problematic since, paradoxically, breakthrough potential in science builds on gradual innovation. If the value of gradual innovation is not better recognized, the potential for breakthrough innovation may well be stifled.
While continuous, gradual innovation is often taken for granted, it could become endangered in a research and funding ecosystem that places ever higher value on breakthrough science.
Concerns that the hypercompetitive dynamics of the current scientific system may impede rather than spur innovative research have been voiced for many years (Alberts et al, 2014). As performance indicators continue to play a central role for promotions and grants, researchers are under pressure to publish extensively, quickly, and preferably in high‐ranking journals (Burrows, 2012). These dynamics increase the risk of mental health issues among scientists (Jaremka et al, 2020), dis‐incentivise relevant and important work (Benedictus et al, 2016), decrease the quality of scientific papers (Sarewitz, 2016) and induce conservative and short‐term thinking rather than risk‐taking and original thinking required for scientific innovation (Alberts et al, 2014; Fochler et al, 2016). Against this background, strong incentives for fostering innovative and daring research are indispensable.  相似文献   

9.
Philip Hunter 《EMBO reports》2013,14(12):1047-1049
EU-LIFE, which represents 10 European life science research institutes, has reopened the debate about how to fund research at the European level by calling for the budget of the European Research Council to be drastically increased.For more than a decade, European scientists have lobbied policy makers in Brussels to increase European Union (EU) funding for research and to spend the money they do provide more efficiently. This debate eventually led to the establishment of the European Research Council (ERC) in 2007, which provides significant grants and does so on the sole criterion of scientific excellence—something for which the scientific community pushed. As such, there seemed to be consensus about how to judge and fund science at the European level, including in the debate about the EU''s Horizon 2020 funding scheme—the EU''s framework for research and innovation—which will spend €80 billion over the next seven years (2014–2020). The conclusion seemed to be that the ERC should continue to support basic research on the basis of excellence, whereas other parts of the programme would focus on large cooperative projects, improving the competitiveness of Europe and meeting societal challenges such as climate change and public health.But a new body called EU-LIFE—set up in May 2013—has reopened the debate about how to fund science and is campaigning for a greater focus on rewarding excellence, even at the expense of funding projects on the grounds of fairness or to correct imbalances between EU member states. EU-LIFE was founded by 10 institutions including the Centre for Genomic Regulation (CRG; Barcelona, Spain), the Institut Curie (Paris, France) and the Max Delbrück Centre (Berlin, Germany), partly to provide a collective voice for mid-sized research institutes in the life sciences that might lack influence on their own (
InstituteAdvanced grantStarting grantProof-of-concept grantTotal ERC grantsTotal ERC funding (million €)
Centre for Genomic Regulation (Spain)3911319.0
Free University of Brussels (VIB; Belgium)51412033.3
Institut Curie (France)7111834.5
Max Delbrück Centre for Molecular Medicine (Germany)44815
Instituto Gulbenkian de Ciência (Portugal)1457.8
Research Centre for Molecular Medicine of the Austrian Academy of Sciences (Austria)12145.1
European Institute of Oncology (Italy)31158.7
Central European Institute of Technology (Czech Republic)
The Netherlands Cancer Institute (Netherlands)641019.5
Institute for Molecular Medicine Finland (Finland)
Open in a separate windowERC, European Research Council.But while claiming to speak for the cause of European research as a whole, EU-LIFE also has a specific remit to speak up for its own members, mostly mid-sized institutions that consider themselves poorly represented in the corridors of EU decision-making. “There are several reasons why we decided to start this initiative,” said Luis Serrano, Director of the Centre for Genomic Biology in Barcelona, Spain, one of the EU-LIFE founders. “First we see that institutes of research do not have a voice in Brussels as a group, unlike universities or international organizations like EMBL. While in many cases our goals will be similar, this is not always the case. Second, we think that there are excellent research institutes in Europe, at the same level as many top places in the USA, that do not have enough visibility due to their size. By coming together and offering similar standards of quality, we want to achieve critical mass and become attractive to PhD and post-doctoral fellows from all over the world who currently mainly go to the USA. Third we think that all EU-LIFE members have specific strengths and know-how on different aspects of the life sciences. By sharing our experiences we think we could improve the quality and competitiveness of all of us.”While few scientists or policy makers would argue with EU-LIFE''s aim to stimulate international collaboration and attract the best young researchers to Europe, not everyone agrees with the organization''s call to do so by distributing more funds via the ERC. Although the ERC is widely regarded as successful in encouraging excellence and ‘curiosity-driven'' research—as opposed to distributing funds purely equitably between member countries—Mark Palmer, director of international strategy at the UK Medical Research Council (MRC), which spent £759.4 million (about €900 million) on research in the financial year 2011/2012, questions whether the ERC should receive even more funding than it does at present: “We support excellence, but if you put all the resources into one sort of mechanism, you lack the visibility for reaching across countries to join together to do research,” he said. “So there is an advantage in having a mixed pot of funding. If you put too much money in the ERC it becomes so distorted that you haven''t got European added value. You might as well have left the money back home and done it through the normal mechanisms.”“If you put too much money in the ERC it becomes so distorted that you haven''t got European added value”The ERC itself felt it was inappropriate to comment on its own budget, but Ernst-Ludwig Winnacker, who served as its secretary general from 2007 to 2009, pointed out that while he agrees in principle with the Commission''s proposal to double the ERC''s budget under Horizon 2020, this will not guarantee that the number of suitable high-quality applicants for funding would double as well. “Let us not forget that we are talking about scientific excellence only,” Winnacker, now General Secretary of the Human Frontier Science Program, said. “I have often asked myself how much excellence of the level expected to get supported by the ERC do we have in Europe. Would we really be able to spend twice the amount of money at the same quality level as now? I doubt it.”Winnacker indicated therefore that the ERC budget should increase at a sustainable level that ensures that the quality of projects funded is maintained. He also highlighted another risk in focusing a growing proportion of funds through the ERC, which is that it might make other agencies envious.“I have often asked myself how much excellence of the level expected to get supported by the ERC do we have in Europe”Palmer, for the MRC, said that he agrees with the current level of proposed funding increase for the ERC, but argued that it is important to preserve other sources of funding that support large-scale programmes involving multiple institutions, especially in the life sciences. In particular, major clinical screening programmes call for huge samples of patients, in some cases from diverse populations, which requires international collaboration, irrespective of the individual excellence of the departments involved. “For example the EPIC [European Prospective Investigation into Cancer and Nutrition] cohort has been going 20 years with over 500,000 people across 10 different countries,” Palmer said. “That diversity is something that you have to do at the European level.” EPIC is the world''s largest study on the relationship between diet and lifestyle factors and chronic diseases: A total of 521,457 healthy adults, mostly aged 35–70, were enrolled in 23 centres in 10 countries between 1993 and 1999, and the study showed with high statistical confidence that a modest change in lifestyle can yield a massive gain in life expectancy [1].There may be broad agreement that large projects in biomedical research require a European-wide approach. The argument, though, boils down to whether or not funds designated for research should be used as a way of building infrastructure or collaborative frameworks alongside excellence, rather than being subordinated to it. This is the belief—and to some extent the remit—of the European Science Foundation (ESF; Strasbourg, France), which has promoted networking and the dissemination of information among research teams whose work is already being funded by other agencies. Now this role has been passed to Science Europe, headquartered in Brussels, while the ESF is focusing on its public communication activities.EU-LIFE will seek to collaborate with both the ESF and Science Europe, according to Michela Bertero, Head of International and Scientific Affairs at CRG. “We are in contact with both initiatives. They operate at a higher science policy level and on a larger scale, and we want to engage with them as research stakeholders,” Bertero said.Yet while the organization agrees with the ESF that science should tackle societal challenges, EU-LIFE disputes that this is best done by grants awarded solely on the basis of large collaborative projects. “Excellence should always be at the forefront for awarding grants,” explained Serrano. “This does not mean that societal and industrial challenges should not be tackled. But if there is no expertise in an area, then instead of funding groups which are not competitive, money should be used to train and hire the right personnel.”By challenging Horizon 2020 to distribute more money on the basis of excellence rather than goals, EU-LIFE seems to have reopened the debate on how research funds should be spent and to what purpose. Others, however, are calling for some research money to be put towards infrastructure in regions with the potential for high-quality science, but which lack resources and laboratories. This has actually been acknowledged and catered for in Horizon 2020, according to Joanna Newman, Director of the UK Higher Education International Unit, a registered charity funded by various public bodies, which coordinates engagement between UK universities and international partners. “Excellence should be the main criterion for awarding research funding,” Newman said. “As this is public money, it would be unfair to the public to fund less excellent projects. However, there is also a responsibility to help other Member States to build research capacity. Horizon 2020 will include a cross-cutting ‘Spreading Excellence and Widening Participation'' programme line to address this, by funding the partnering of institutions and/or researchers with different grades of current research capacity.”One European player even argues that the EU should extend this policy to assist building infrastructure in developing countries. “Developed countries have a responsibility in helping capacity building in the field of research,” said Antoine Grassin, Directeur Général of Campus France, the country''s agency for promoting higher education and international mobility. “From that point of view, it may be very helpful for researchers from developing countries to be able to join the international scientific community, which may require financial help, such as grants.”“…if there is no expertise in an area, then instead of funding groups which are not competitive, money should be used to train and hire the right personnel”In the case of Europe, Newman pointed out that links between the Horizon Framework programme and the Structural Funds to improve infrastructure and research capabilities within regions will be stronger under the 2020 regime from 2014 to 2020 compared with the current Framework Programme 7. But this alignment between the allocation of funds designated for structural purposes and those granted for research purposes is precisely one of EU-LIFE''s main complaints about the Horizon 2020 programme—the resulting allocations are not always based on excellence.Furthermore, Winnacker argued that excellence does not mix well with other societal factors within a single programme, never mind an individual project. “If other parameters are included, politics would immediately interfere,” he said. “The ERC only survives because it has impeccable scientific standards, which politicians do not dare to touch without being ridiculed. There are enough programs in Horizon 2020, and elsewhere, like the structural funds, which can take care of regional and societal issues. These are of course important, but let''s face it, the real ‘disruptive'' innovations which create jobs only come from fundamental research.”According to Lieve Ongena, Science Policy Manager at the Free University of Brussels (VUB; Belgium), one of the EU-LIFE founding members, it is for these sorts of reasons that EU-LIFE wants to divert more funds to the ERC. “It''s clear that the ERC is an absolutely necessary funding source,” she said. “The scientists can bring their own ‘pet'' project without addressing any top down action lines agreed upon by the member states. In addition, the money provides sufficient critical mass for a sufficiently long time line: five years. Above all, the evaluation excellence is the ‘sole'' selection criterion, and thus by definition grantees will help to increase Europe''s competitiveness.” Ongena emphasized that EU-LIFE would draw the attention of decision-makers to the ERC whenever possible. “Ultimately, they hope to convince ERC President Helga Nowotny to increase the budget, which is today only 17% of the speculated Horizon 2020 budget.”… there is a broad consensus that research priorities have changed and that Horizon 2020 necessarily includes a greater societal dimensionThe view that the ERC should become Europe''s dominant funding agency is still open to debate, however, even among institutions committed both to excellence and to supporting research at a European level. The European Molecular Biology Laboratory (EMBL) in Heidelberg obtains funding from 20 member states and its Director General Iain Mattaj argues for the continued existence of multiple funding sources. “While recognizing the very important role of the ERC in European research funding, I find it essential that research continues to be supported by a diversity of mechanisms, both national and European,” he said. “In the case of Horizon 2020, these include funding for Research Infrastructures, Marie Sklodowska Curie (MSC) Actions that fund the training of young research fellows and research in the area of Health. In particular, EMBL has advocated increased funding not only for the ERC but also for MSC Actions and for Research Infrastructures.” However, within these programmes, Mattaj emphasized that excellence should also be the main criterion for awarding grants in every case.Meanwhile EU-LIFE also has a grander vision beyond funding to make Europe more competitive and attractive for research, according to Geert Van Minnebruggen, Integration Manager at VUB. “To keep Europe a competitive and attractive place for top scientists, we should be prepared to offer them similar budget categories as the US and China,” Van Minnebruggen said. “EU-LIFE sees it as one of its major tasks, through dialogue with policy makers, to create awareness of this necessity.”Palmer points out that attracting scientists from outside the EU is not just about money, but also about culture. “With a lab, the culture is pretty well English language now, people publish in English and apply for grants in English. That can be an inhibitor, both for scientists and their partners, in the case of countries where English isn''t the first language,” he said. This issue has been taken on board by EU-LIFE, according to Serrano: “All EU institutes should try to become more international, use English as the main speaking language, ensure competitiveness and external evaluations, recognize merit and support it, favour mobility, and be open to new ideas and initiatives.”Despite disagreements over funding mechanisms and targets, there is a broad consensus that research priorities have changed and that Horizon 2020 necessarily includes a greater societal dimension. “We''re interested now in health and demographic changes and wellbeing challenges, which is very different from how they were funding science under previous frameworks,” Palmer said. “It is very much driven by the economic situation, about citizens as patients, health delivery and how to be sure patients get access to treatment.”Ongena has similar views: “As responsible life scientists, EU-LIFE community members should do everything possible to drive basic and translational research forward and to translate findings into benefits for society,” she said. But she reiterated EU-LIFE''s position that all this should be done on the criterion of excellence only. It seems that the debates from the past decade about how to properly support research are not yet over.  相似文献   

10.
Mismatched expectations     
Frank Gannon 《EMBO reports》2021,22(4)
Public funding for basic research rests on a delicate balance between scientists, governments and the public. COVID could further shift this equilibrium towards translation and application.

Keeping a research laboratory well‐funded to pay for salaries, reagents, infrastructure, travel, and publications is surely a challenging task that can consume most of a PI’s time. The risk is that if the funding decreases, the laboratory will have to shrink, which means less publications and a decreased probability of getting new grants. This downward spiral is hard to reverse and can end up with a token research activity and increased teaching instead. Some would see this is as an unwelcome career change. Apart from the personal challenge for PIs to keep the income flowing, there is no guarantee that the overall funding wallet for research will continue to grow and no certainty that the covenant between the funder and the funded will remain unchanged. The COVID‐19 pandemic could in fact accelerate ongoing changes in the way public funding for research is justified and distributed.There are three legs that support the delicate stool of competitive funding. The first is the scientists or, more precisely, the primary investigators. To get to that position, they had be high achievers as they moved from primary degree to PhD to post doc to the Valhalla of their own laboratory. Along the way they showed to be hard‐working, intelligent, competitive, innovative, lucky, and something between a team player and a team leader. The judgment to grant independence is largely based on publications—and given their track record of great papers to get there, most young PIs assume they will continue to get funding. This is not a narcissistic sense of entitlement; it is a logical conclusion of their career progression.They will get started by recruiting a few PhD or higher degree students. Although this is about educating students, a PI of course hopes that their students generate the results needed for the next grant application. The minimum time for a PhD is about three years, which explains that many grants are structured around a 3‐ to 5‐year research project. The endpoints are rarely the finishing line for a group’s overall research program: Hence, the comments in reviews along the line that “this paper raises more questions than it answers and more work will be required…” Work is carried on with a relay of grants edging asymptotically to answer a question raised decades before. I recall a lecturer from my PhD days who said that he would not do an obvious experiment that would prove or disprove his hypothesis, because “If I did that experiment, it would be the end of my career”. Others are less brazen but still continue to search for the mirage of truth when they know deep in their hearts that they are in a barren desert.The funding from the competitive grants is rarely enough to feed the ever‐growing demand for more people and resources and to make provisions for a hiatus in grant income. Eventually, an additional income stream comes from industry attracted by the knowledge and skills in the laboratory. The PI signs a contract for a one‐year period and allocates some resources to deliver the answers required when due. Similarly, some other resources are shepherded to fulfill the demands of a private donor who wants rapid progress on a disease that afflicts a loved one. The research group is doing a marathon run working on their core challenges with occasional sprints to generate deliverables and satisfy funders who require rapid success—a juggling act that demands much intellectual flexibility.State funding is the second leg and governments have multiple reasons for supporting academic research, even if these are not always presented clearly. Idealistically, the public supports research to add to the pool of knowledge and to understand the world in which we live but this is not how public funding started. The first universities began as theological seminars that expanded to include the arts, law, philosophy and medicine. Naturalists and natural scientists found them a serene and welcoming place to ponder important questions, conduct experiments, and discuss with their colleagues. The influence of Wilhelm von Humboldt who championed the concept of combining teaching and research at universities was immense: both became more professional with codified ways of generating and sharing knowledge. Government funding was an inevitable consequence: initially to pay for the education of students, it expanded to provide for research activities.While that rationale for supporting teaching and research remains, additional reasons for funding research emerged, mostly in the wake of World War 2: the military, national economies, and medicine required new products and services enabled by knowledge. It also required new structures and bodies to control and distribute public resources: hence the establishment of research funding agencies to decide which projects deserve public money. The US National Science Foundation was founded in 1950 following the analysis of Vannevar Bush that the country’s economic well‐being and security relied on research. The NIH extramural program started tentatively in the late 1930s. The Deutsche Forschungsgemeinschaft (DFG) was established in 1951. The EU Framework Programmes started in 1984 with the explicit goal to strengthen the economy of the community. It was only in 2007 that the European Research Council (ERC) was established to support excellence in research rather than to look at practical benefits.But the tide is inevitably moving toward linking state research funding with return on investment measured in jobs, economic growth, or improved health. Increasingly, the rationale for government investment is not just generation of knowledge or publications, but more products and services. As science is seen as the driver of innovation and future economic growth, the goal has been to invest 3% or more of a country’s GDP into research—although almost two‐thirds of this money comes from industry in advanced economies. Even nations without a strong industrial base strive to strengthen their economies by investing in brains. This message about government’s economic expectations is not lost on the funding agencies and softly trickles down to selection committees, analysts, and program officers. The idealistic image of the independent scientist pursuing knowledge for knowledge’s sake no longer fits into this bigger picture. They are now cajoled into research collaborations and partnerships and, hooked to the laboratories’ funding habit, willingly promise that the outcome of the work will somehow have practical applications: “This work will help efforts to cure cancer”.The third leg that influences research directions is the public who pay for research through their taxes. Mostly, they do not get overly excited or concerned about those few percentages of the national budget that go to laboratories. However, the COVID‐19 crisis could change that: Now, the people in the white coats are expected to provide rapid solutions to pressing and complex problems. The scientists have so far performed extremely well: understanding SARS‐CoV‐2 pathology, genetics, and impact on the immune system along with diagnostic tests and vaccine candidates came in record time. Vaccine development moved with lightning speed from discovery of the crucial receptor proteins to mass‐producing jabs, employing many new technologies for the first time. 2020 has been a breath‐taking and successful year for scientists who delivered a great return on investment.The public have also seen what a galvanized and cooperative scientific community across disciplines can achieve. “Aha,” they may say, “why don’t you now move on to tackle triple‐negative breast cancer, Alzheimer’s or Parkinson’s?” This is a fair and challenging question. And the increasing involvement of consumers and patients in research, at the behest of funding agencies, will further this expectation until the researchers respond. And respond they will, as they have always done to every hint of what might be needed to obtain funding.The old order is changing. The days of the independent academics getting funding for life to do what they like in the manner they chose will not survive the pressures from government to show a return on investment and from society to provide solutions to their problems. The danger is that early‐stage research—I did not say “basic” as it has joined “academic” as a pejorative term—will be suffocated. Governments appoint the heads of funding agencies, and it is not surprising if the appointees share the dominant philosophy of their employer. Peer‐review committees are being discouraged, subtly, from supporting early‐stage research. Elsewhere, the guidelines for decisions on grant applications give an increasing score for implementation, translation, IP generation, and so on. Those on the panels get the message and bring it back to their institutions that slowly move away from working to understand what we are ignorant about to using our (partial) understanding to develop cures and drugs.As in all areas, balance is needed. Those at the forefront of translating knowledge into outcomes for society have to remind the public as well as the government that the practical today is only possible because of the “impractical” research of yesterday. Industry is well aware of this and has become a strong champion for excellent early‐stage research to lay the groundwork for solving the next set of hard problems in the future. The ERC and its national counterparts have a special role to play in highlighting the benefits of supporting research with excellence as the sole criterion. In the meantime, scientists have to embrace the new task of developing solutions to societal problems without abandoning the hard slog of innovative research that opens up new understanding from which flows translation into practical applications.  相似文献   

11.
The Horizontal Gene Pool: an ESF workshop summary     
Zechner EL  Bailey MJ 《Plasmid》2004,51(2):67-74
The European Science Foundation (ESF) funds a limited number of exploratory workshops each year that enable scientists to meet and develop plans for a program of integrated research which would benefit from a coordinated European effort. In summer 2003, the Standing Committee for Life and Environmental Sciences (LESC) sponsored such a workshop called The Horizontal Gene Pool: The Functional Role of Mobile Genetic Information--How Bacteria Perceive, Sample, and Utilize Genetic Elements in evolution and Local Adaptation. The workshop took place at St. Catherine's College, Oxford, UK. Its purpose was to identify how recent advances in the application of genomics and microbial ecology can be harnessed to determine the genetic mechanisms that underpin the biological role of the horizontal gene pool. Scientific excellence at the workshop was contributed by senior scientists and young investigators from research institutes located in nine European countries.  相似文献   

12.
To Apply or Not to Apply: A Survey Analysis of Grant Writing Costs and Benefits     
Ted von Hippel  Courtney von Hippel 《PloS one》2015,10(3)
We surveyed 113 astronomers and 82 psychologists active in applying for federally funded research on their grant-writing history between January, 2009 and November, 2012. We collected demographic data, effort levels, success rates, and perceived non-financial benefits from writing grant proposals. We find that the average proposal takes 116 PI hours and 55 CI hours to write; although time spent writing was not related to whether the grant was funded. Effort did translate into success, however, as academics who wrote more grants received more funding. Participants indicated modest non-monetary benefits from grant writing, with psychologists reporting a somewhat greater benefit overall than astronomers. These perceptions of non-financial benefits were unrelated to how many grants investigators applied for, the number of grants they received, or the amount of time they devoted to writing their proposals. We also explored the number of years an investigator can afford to apply unsuccessfully for research grants and our analyses suggest that funding rates below approximately 20%, commensurate with current NIH and NSF funding, are likely to drive at least half of the active researchers away from federally funded research. We conclude with recommendations and suggestions for individual investigators and for department heads.  相似文献   

13.
Why bother with a COST Action? The benefits of networking in science     
Kalliopi Kostelidou  Fabio Babiloni 《Nonlinear biomedical physics》2010,4(Z1):S12
A COST Action is a consortium of -mainly- European scientists (but open to international cooperation) working on a common research area, with the same subject; COST provides funding to the Actions for networking and dissemination activities, thus the participating scientists must have secured research funding from other national or European sources. COST funding is in the scale of approximately 100 kEuros per year and in this vein, it is often criticized both in that it does not fund research and the core science and in that its funding is ‘limited’. However, COST with its instruments is an integral pillar of the European Research Area, and it is through its mission that a variety of aspects of the research environment, fundamental to the success of the research, are catered for; these include scientific networking, collaboration/exchange/training and dissemination activities. Through fast procedures, proposals are evaluated and approved for funding in less than one year from submission date and Actions become operational immediately, managed on flexible management. In this way, COST contributes to reducing the fragmentation in European research investments, while opening the European Research Area to cooperation worldwide. COST Actions have an excellent record of building the critical mass for follow up activities in the EU FP or other similarly competitive programmes.  相似文献   

14.
Science funding and infrastructures in Europe     
Moore A 《Trends in genetics : TIG》2000,16(8):329-330
European science in crisis. Scared? Then read on; you should be. I argue that we cannot sit back for much longer and watch our best scientists emigrate to the USA for the most productive part of their career, and that European scientists should not tolerate a funding system that neither rewards an investigator's brilliance nor the innovative nature of their research. The EC Framework Programme is due for a face lift: scientists should wield the scalpel this time.  相似文献   

15.
Academic labour shortages. A lack of trained scientists could slow down research in Europe     
P Hunter 《EMBO reports》2012,13(9):795-797
A shortage of skilled science labour in Europe could hold back research progress. The EU will increase science funding to address the problem, but real long-term measures need to start in schools, not universities.Scientists have always warned about the doom of research that could result from a shortage of students and skilled labour in the biomedical sciences. In the past, this apocalyptic vision of empty laboratories and unclaimed research grants has seemed improbable, but some national research councils and the European Union (EU) itself now seem to think that we may be on the brink of a genuine science labour crisis in Europe. This possibility, and its potential effects on economic growth, has proven sufficiently convincing for the European Commission (EC) to propose a 45% increase to its seven-year research and development budget of 45%—from €55 billion, provided under the Framework Programme (FP7), to €80 billion—for a new strategic programme for research and innovation called Horizon 2020 that will start in 2014.This bold proposal to drastically increase research funding, which comes at a time when many other budgets are being frozen or cut, was rigorously defended in May 2012 by the EU ministers responsible for science and innovation, against critics who argued that such a massive increase could not be justified given the deepening economic crisis across the EU. So far, the EU seems to be holding to the line that it has to invest more into research if Europe is to compete globally through technological innovation underpinned by scientific research.Europe is caught in a pincer movement between its principle competitors—the USA and Japan, which are both increasing their research budgets way ahead of inflation—and the emerging economies of China, India, Brazil and Russia, which are quickly closing from behind. The main argument for the Horizon 2020 funding boost came from a study commissioned by the EU [1], which led the EC to claim that Europe faces an “innovation emergency” because its businesses are falling behind US and Japanese rivals in terms of investment and new patents. As Martin Lange, Policy Officer for Marie Curie Actions—an EU fellowship programme for scientists—pointed out, “China, India and Brazil have started to rapidly catch up with the EU by improving their performance seven per cent, three per cent and one per cent faster than the EU year on year over the last five years.”According to Lange, Europe''s innovation gap equates to a shortage of around 1 million researchers across the EU, including a large number in chemistry and the life sciences. This raises fundamental issues of science recruitment and retention that a budget increase alone cannot address. The situation has also been confused by the economic crisis, which has led to the position where many graduates are unemployed, and yet there is still an acute shortage of specialist skills in areas vital to research.This is a particularly serious issue in the UK, where around 2,000 researcher jobs were lost following the closure of pharmaceutical company Pfizer''s R&D facility in Kent, announced in February 2011. “The travails of Pfizer have affected the UK recruitment market,” explained Charlie Ball, graduate labour market specialist at the UK''s Higher Education Careers Services Unit. The closure has contributed to high unemployment among graduates, particularly chemists, who tend to be employed in pharmaceutical research in the UK. “Even among people with chemistry doctorates, the unemployment rate is higher than the average,” he said.The issue for chemists, at least in the UK, is not a skills shortage, but a skills mismatch. Ball identified analytical chemistry as one area without enough skilled people, despite the availability of chemists with other specialties. He attributes part of the problem to the pharmaceutical industry''s inability to communicate its requirements to universities and graduates, although he concedes that doing so can be challenging. “One issue is that industry is changing so quickly that it is genuinely difficult to say that in three or four years time we will need people with specific skills,” Ball explained.So far, the EU seems to be holding to the line that it has to invest more into research […] to compete globally through technological innovation underpinned by scientific researchAlongside this shortage of analytical skills, the UK Medical Research Council (MRC) has identified a lack of people with practical research knowledge, and in particular of experience working with animals, as a major factor holding back fundamental and pre-clinical biomedical research in the country. It has responded by encouraging applications from non-UK and even non-EU candidates for doctoral studentships that it funds, in cases where there is a scarcity of suitable UK applicants.But, the underlying problem common to the whole of Europe is more fundamental, at least according to Bengt Norden, Professor of Physical Chemistry at the University of Gothenburg in Sweden. The issue is not a shortage of intellectual capital, Norden argues, but a growing lack of investment into training chemists, which in turn undermines life sciences research. Similarly to many other physical chemists, Norden has worked mainly in biology, where he has applied his expertise in molecular recognition and function to DNA recombination and membrane translocation mechanisms. He therefore views a particularly acute recruitment and retention crisis in chemistry as being a drag on both fundamental and applied research across the life sciences. “The recruitment crisis is severe,” Norden said. “While a small rill of genuinely devoted‘young amateur scientists‘ still may sustain the recruitment chain, there is a general drain of interest in science in general and chemistry in particular.” He attributes this in part to sort of a ‘chemophobia'', resulting from the association of chemistry with environmental pollution or foul odours, but he also blames ignorant politicians and other public figures for their negative attitude towards chemistry. “A former Swedish Prime Minister, Goran Persson, claimed that ‘his political goal was to make Sweden completely free from chemicals'',” Norden explained by way of example.Scientists themselves also need to do a better job of countering the negative perceptions of chemistry and science, perhaps by highlighting the contribution that chemistry is already making to clearing up pollution. Chemistry has been crucial to the development of microorganisms that can be used to break down organic pollutants in industrial waste, or clear up accidental spillage during transport. In fact, chemistry has specifically addressed the two major challenges involved: the risk that genetically engineered microorganisms could threaten the wider environment if they escape, and the problem that the microorganisms themselves can be poisoned if the concentration of pollutants is too high.A team at the University of Buenos Aires in Argentina has solved both problems by developing a material comprising an alginate bead surrounded by a silica gel [2]. This container houses a fungus that produces enzymes that break up a variety of organic pollutants. The pores of the hydrogel can limit the intake of toxic compounds from the polluted surroundings, thus controlling the level of toxicity experienced by the fungus, whilst the fungus itself is encapsulated inside the unit and cannot escape. Norden and others believe that if such examples were given more publicity, they would both improve the reputation of chemistry and science in general, and help to enthuse school students at a formative age.…Europe''s innovation gap equates to a shortage of around 1 million researchers across the EU, including a large number in chemistry and the life sciencesUnfortunately, this is not happening in schools, according to Norden, where the curriculum is failing both to enthuse pupils through practical work, and to inform them of the value of chemistry across society: “school chemistry neither stimulates curiosity nor does it promote understanding of what is most important to everybody,” he said. “It should be realized that well-taught chemistry is a necessary tool for dealing with everyday problems, at home or at work, and in the environment, relating to function of medicines, as well as what is poisonous and what is less noxious. As it is, all chemicals are presented simply as poisons.”Norden believes that a broader cultural element also tends to explain the particular shortage of analytical skills in chemistry. He believes that young people are more inclined than ever before to weigh up the probable rewards of a chosen profession in relation to the effort involved. “There seems to be a ‘cost–benefit'' aspect that young people apply when choosing an academic career: science, including maths, is too hard in relation to the jobs that eventually are available in research,” he explained. This ‘cost–benefit'' factor might not deter people from studying subjects up to university level, but can divert them into careers that pay a lot more. Ball believes that there is also an issue of esteem, in that people tend to gravitate towards careers where they feel valued. “Our most able graduates don''t see parity in esteem between research and other professions being represented by the salary they are paid,” he explained. “That is an issue that needs to be resolved, and it is not just about money, but working hard to convince these graduates that there is a worthwhile career in research.”Our most able graduates don''t see parity in esteem between research and other professions being represented by the salary they are paid,Lange suggests that it would be much easier to persuade the best graduates to stay in science if they were able to pursue their ideas free from bureaucracy or other constraints. This was a main reason to start the Marie Curie Actions programme of which Lange is a part, and which will be continued under Horizon 2020 with a new name, Marie Skłodowska-Curie Actions, and an increased budget. “The Marie Curie Actions have been applying a bottom-up principle, allowing researchers to freely choose their topic of research,” Lange explained. “The principle of ‘individual-driven mobility'' that is used in the Individual Fellowships empowers researchers to make their own choices about the scientific topic of their work, as well as their host institutions. […] It is a clear win–win situation for both sides: researchers are more satisfied because they are given the opportunity to take their careers in their own hands, while universities and research organizations value top-class scientists coming from abroad to work at their institutes.”Lange also noted that although Marie Curie Fellows choose their own research subjects, they tend to pursue topics that are relevant to societal needs because they want to find work afterwards. “More than 50% of the FP7 Marie Curie budget has been dedicated to research that can be directly related to the current societal challenges, such as an ageing population, climate change, energy shortage, food and water supply and health,” he said. “This demonstrates that researchers are acting in a responsible way. Even though they have the freedom to choose their own research topics, they still address problems that concern society in general.” In addition, Marie Curie Actions also encourages engagement with the public, feeding back into the wider campaign to draw more people into science careers. “Communicating science to the general public will be of importance as well, if we want to attract more young people to science,” Lange said. “Recently, the Marie Curie Actions started encouraging their Fellows to engage in outreach activities. In addition, we have just launched a call for the Marie Curie Prize, where one of the three Prize categories will be ‘Communicating Science''.”Another important element of the EU''s strategy to stimulate innovative cutting edge research is the European Research Council (ERC). It was the first pan-European funding body for front-line research across the sciences, with a budget of €7.5 billion for the FP7 period of 2007–2013, and has been widely heralded as a success. As a result, the ERC is set to receive an even bigger percentage increase than other departments within Horizon 2020 for the period 2014–2020, with a provisional budget of €13.2 billion.Leading scientists, such as Nobel laureate Jean-Marie Lehn, from Strasbourg University in France, believe that the ERC has made a substantial contribution to innovative research and, as a result, has boosted the reputation of European science. “The ERC has done a fantastic job which is quite independent of pressures from the outside,” he said. “It is good to hear that taking risks is regarded as important.” Lehn also highlighted the importance of making it clear that there are plenty of opportunities in research beyond those funded, and therefore dictated, by the big pharmaceutical companies. “There is chemistry outside big pharma, and life beyond return on investment,” he said. Lehn agreed that there must be a blend between blue sky and goal-oriented research, even if there is an argument over what the blend and goals should be.…the ERC has made a substantial contribution to innovative research and, as a result, has boosted the reputation of European scienceThere is growing optimism that Europe''s main funding bodies, including the national research councils of individual countries, have not only recognized the recruitment problem, but are taking significant steps to address it. Even so, there is still work to be done to improve the image of science and to engage students through more stimulating teaching. Chemistry in particular would benefit from broader measures to attract young people to science. Ultimately, the success of such initiatives will have much broader effects in the life sciences and drug development.  相似文献   

16.
Good news for the people who love bad news: an analysis of the funding of the top 1% most highly cited ecologists     
Christopher J. Lortie  Lonnie Aarssen  John N. Parker  Stefano Allesina 《Oikos》2012,121(7):1005-1008
The most highly cited ecologists and environmental scientists provide both a benchmark and unique opportunity to consider the importance of research funding. Here, we use citation data and self‐reported funding levels to assess the relative importance of various factors in shaping productivity and potential impact. The elite were senior Americans, well funded, with large labs. In contrast to Canadian NSERC grant holders (not in the top 1%), citations per paper did not increase with higher levels of funding within the ecological elite. We propose that this is good news for several reasons. It suggests that the publications generated by the top ecologists and environmental scientists are subject to limitations, that higher volume of publications is always important, and that increased funding to ecologists in general can shift our discipline to wider research networks. As expected, collaboration was identified as an important factor for the elite, and hopefully, this serves as a positive incentive to funding agencies since it increases the visibility of their research.  相似文献   

17.
Peer review, program officers and science funding     
Roebber PJ  Schultz DM 《PloS one》2011,6(4):e18680
Increased competition for research funding has led to growth in proposal submissions and lower funding-success rates. An agent-based model of the funding cycle, accounting for variations in program officer and reviewer behaviors, for a range of funding rates, is used to assess the efficiency of different proposal-submission strategies. Program officers who use more reviewers and require consensus can improve the chances of scientists submitting fewer proposals. Selfish or negligent reviewers reduce the effectiveness of submitting more proposals, but have less influence as available funding declines. Policies designed to decrease proposal submissions reduce reviewer workload, but can lower the quality of funded proposals. When available funding falls below 10-15% in this model, the most effective strategy for scientists to maintain funding is to submit many proposals.  相似文献   

18.
Who owns the data?     
Petsko GA 《Genome biology》2005,6(4):107
About ten years ago, a group of scientists began to argue that it was unfair to ask other scientists to pay to read the results of research that had been publicly funded.  相似文献   

19.
The taxonomist - an endangered race. A practical proposal for its survival     
Wägele H  Klussmann-Kolb A  Kuhlmann M  Haszprunar G  Lindberg D  Koch A  Wägele JW 《Frontiers in zoology》2011,8(1):25-7

Background

Taxonomy or biological systematics is the basic scientific discipline of biology, postulating hypotheses of identity and relationships, on which all other natural sciences dealing with organisms relies. However, the scientific contributions of taxonomists have been largely neglected when using species names in scientific publications by not citing the authority on which they are based.

Discussion

Consequences of this neglect is reduced recognition of the importance of taxonomy, which in turn results in diminished funding, lower interest from journals in publishing taxonomic research, and a reduced number of young scientists entering the field. This has lead to the so-called taxonomic impediment at a time when biodiversity studies are of critical importance. Here we emphasize a practical and obvious solution to this dilemma. We propose that whenever a species name is used, the author(s) of the species hypothesis be included and the original literature source cited, including taxonomic revisions and identification literature - nothing more than what is done for every other hypothesis or assumption included in a scientific publication. In addition, we postulate that journals primarily publishing taxonomic studies should be indexed in ISISM.

Summary

The proposal outlined above would make visible the true contribution of taxonomists within the scientific community, and would provide a more accurate assessment for funding agencies impact and importance of taxonomy, and help in the recruitment of young scientists into the field, thus helping to alleviate the taxonomic impediment. In addition, it would also make much of the biological literature more robust by reducing or alleviating taxonomic uncertainty.  相似文献   

20.
The case of philanthropy: bringing scientists and philanthropic donors together,for good     
Olivia Tournay Flatto 《Disease models & mechanisms》2015,8(9):1011-1012
Summary: Philanthropists and scientists share many common interests, and yet they are not familiar with each other''s ways of thinking. This Editorial highlights how to improve their mutual understanding to advance research and life sciences.
“Wealth is not new. Neither is charity. But the idea of using private wealth imaginatively, constructively, and systematically to attack the fundamental problems of mankind is new.” – John Gardner
Philanthropy, derived from private wealth, stands unique as a vital source of scientific funding. Yet many scientists don''t truly understand the workings of this form of charitable giving. Some are even wary of it, and believe that a divide between the worlds of science and business is a normal state of affairs. My experience has exposed striking similarities between the two specialties: both dedicate their resources to innovation and the sincere desire to do good for their fellow man.I''ve been lucky to work on both sides of the fence. I conducted research for my PhD at the Wistar Institute in Philadelphia, PA, and at Sloan Kettering Institute in New York City, NY, where I worked on the Id1 gene and its role in the molecular mechanism of mammalian cell differentiation. I later moved to the Pershing Square Foundation. In 2013, to support young investigators with bold and risky ideas in cancer research in the New York area, the Pershing Square Foundation partnered with the Sohn Conference Foundation to create the Pershing Square Sohn Research Alliance (PSSCRA). Since the organization''s founding, I have served as its Executive Director. As a result of my career experience, I understand firsthand the role of philanthropic support of medical research. I am always excited to work with new, young and innovative talent, and to introduce that talent into the social mainstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号