首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B) receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.  相似文献   

2.
The leptin hormone is critical for normal food intake and metabolism. While leptin receptor (Lepr) function has been well studied in the hypothalamus, the functional relevance of Lepr expression in the ventral tegmental area (VTA) has not been investigated. The VTA contains dopamine neurons that are important in modulating motivated behavior, addiction, and reward. Here, we show that VTA dopamine neurons express Lepr mRNA and respond to leptin with activation of an intracellular JAK-STAT pathway and a reduction in firing rate. Direct administration of leptin to the VTA caused decreased food intake while long-term RNAi-mediated knockdown of Lepr in the VTA led to increased food intake, locomotor activity, and sensitivity to highly palatable food. These data support a critical role for VTA Lepr in regulating feeding behavior and provide functional evidence for direct action of a peripheral metabolic signal on VTA dopamine neurons.  相似文献   

3.
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in?vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.  相似文献   

4.
3,4,-Methylenedioxymethamphetamine (MDMA; 'ecstasy') acts at monoamine nerve terminals to alter the release and re-uptake of dopamine and 5-HT. The present study used microdialysis in awake rats to measure MDMA-induced changes in extracellular GABA in the ventral tegmental area (VTA), simultaneous with measures of extracellular dopamine (DA) in the nucleus accumbens (NAC) shell. (+)-MDMA (0, 2.5, 5 and 10 mg/kg, i.p.) increased GABA efflux in the VTA with a bell-shaped dose-response. This increase was blocked by application of TTX through the VTA probe. MDMA (5 mg/kg) increased 5-HT efflux in VTA by 1037% (p < 0.05). The local perfusion of the 5-HT(2B/2C) antagonist SB 206553 into the VTA reduced VTA GABA efflux after MDMA from a maximum of 229% to a maximum of 126% of basal values (p < 0.05), while having no effect on basal extracellular GABA concentrations. DA concentrations measured simultaneously in the NAC shell were increased from a maximum of 486% to 1320% (p < 0.05). The selective DA releaser d-amphetamine (AMPH) (4 mg/kg) also increased VTA GABA efflux (180%), did not alter 5-HT and increased NAC DA (875%) (p < 0.05), but the perfusion of SB 206553 into the VTA failed to alter these effects. These results suggest that MDMA-mediated increases in DA within the NAC shell are dampened by increases in VTA GABA subsequent to activation of 5-HT(2B/2C) receptors in the VTA.  相似文献   

5.
Mesencephalic dopaminergic neurons are known to project to the prefrontal cortex (PFC) and the striatum (STR). Organotypic slice co-cultures of the ventral tegmental area/substantia nigra (VTA/SN)-complex and the PFC or STR, respectively, were used to analyze the cytoarchitectural organization of the VTA/SN-complex and the innervation pattern of the target slices by dopaminergic fibers. After 10-28 days of culturing immunocytochemistry with antibodies against tyrosine hydroxylase (TH) was performed. The VTA/SN-complex revealed in vitro an organization of TH-positive cells similar to those observed in rat brains of comparable age. TH-immunoreactive cells exhibited their typical morphology and formed long processes. No TH-immunolabeled elements were found in single cultures of PFC and STR. Tracing of VTA/SN fibers with biocytin as well as TH-immunostaining showed numerous labeled fibers in the co-cultured slices. Extensive fiber crossing was observed in the co-cultures of the VTA/SN-complex and STR but only a sparse fiber bridge in the co-cultured slices of VTA/SN-complex and PFC. The VTA/SN-complex-PFC system obviously retained several of its in vivo characteristics, e.g. the fiber network in the prefrontal cortical subareas. Our results demonstrate that TH-immunoreactive neurons develop their typical innervation pattern in slice co-cultures of VTA/SN-complex and PFC or STR, respectively. This in vitro approach may be useful for investigations of the dopaminergic function in the VTA/SN-prefrontal pathway.  相似文献   

6.
Summary The putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus acumbens (NAC) and the behavioural stimulation induced by systemically administered dizocilpine (MK-801) was investigated. Microdialysis was utilized in rats with probes in the VTA and NAC. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1.0 mM) or vehicle and dialysates from the NAC were analyzed with high-performance liquid chromatography for DA. Forty min after onset of CNQX or vehicle perfusion of the VTA MK-801 (0.1 mg/kg) was injected subcutaneously (sc). Subsequently, typical MK-801 induced behaviours were assessed. The MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC were effectively antagonized by CNQX perfusion of the VTA. However, by itself the CNQX or vehicle perusion of the VTA did not affect DA levels in NAC or the rated behaviours. The results indicate that MK-801 induced hyperlocomotion and increased DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by locally increased EAA release. In contrast, the enhanced DA output in the NAC induced by systemic nicotine (0.5 mg/kg sc) was not antagonized by intra VTA infusion of CNQX (0.3 or 1.0 mM), but instead by infusion of the NMDA receptor antagonist AP-5 (0.3 or 1.0 mM) into the VTA, which by itself did not alter DA levels in the NAC. Thus, the probably indirect, EAA mediated activation of the mesolimbic DA neurons in the VTA by MK-801 and nicotine, respectively, seems to be mediated via different glutamate receptor subtypes.  相似文献   

7.
We examined whether neurons in the midbrain ventral tegmental area (VTA) play a role in generating central command responsible for autonomic control of the cardiovascular system in anesthetized rats and unanesthetized, decerebrated rats with muscle paralysis. Small volumes (60 nl) of an N-methyl-D-aspartate receptor agonist (L-homocysteic acid) and a GABAergic receptor antagonist (bicuculline) were injected into the VTA and substantia nigra (SN). In anesthetized rats, L-homocysteic acid into the VTA induced short-lasting increases in renal sympathetic nerve activity (RSNA; 66 ± 21%), mean arterial pressure (MAP; 5 ± 2 mmHg), and heart rate (HR; 7 ± 2 beats/min), whereas bicuculline into the VTA produced long-lasting increases in RSNA (130 ± 45%), MAP (26 ± 2 mmHg), and HR (66 ± 6 beats/min). Bicuculline into the VTA increased blood flow and vascular conductance of the hindlimb triceps surae muscle, suggesting skeletal muscle vasodilatation. However, neither drug injected into the SN affected all variables. Renal sympathetic nerve and cardiovascular responses to chemical stimulation of the VTA were not essentially affected by decerebration at the premammillary-precollicular level, indicating that the ascending projection to the forebrain from the VTA was not responsible for evoking the sympathetic and cardiovascular responses. Furthermore, bicuculline into the VTA in decerebrate rats produced long-lasting rhythmic bursts of RSNA and tibial motor nerve discharge, which occurred in good synchrony. It is likely that the activation of neurons in the VTA is capable of eliciting synchronized stimulation of the renal sympathetic and tibial motor nerves without any muscular feedback signal.  相似文献   

8.
Mistletoe extracts have immunomodulatory activity. We show that nontoxic concentrations of Viscum album extracts increase natural killer (NK) cell-mediated killing of tumor cells but spare nontarget cells from NK lysis. The compounds responsible for this bioactivity were isolated from mistletoe and characterized. They have low molecular mass and are thermostable and protease-resistant. After complete purification by HPLC, they were identified by tandem MS as viscotoxins A1, A2 and A3 (VTA1, VTA2 and VTA3, respectively). Whereas micromolar concentrations of these viscotoxins are cytotoxic to the targets, the bioactivity with respect to NK lysis is within the nanomolar range and differs between viscotoxin isoforms: VTA1 (85 nm), VTA2 (18 nm) and VTA3 (8 nm). Microphysiometry and assays of cell killing indicate that, within such nontoxic concentrations, viscotoxins do not activate NK cells, but act on cell conjugates to increase the resulting lysis.  相似文献   

9.
Persistent drug-seeking behavior is hypothesized to co-opt the brain's natural reward-motivational system. Although ventral tegmental area (VTA) dopamine (DA) neurons represent a crucial component of this system, the synaptic adaptations underlying natural rewards and drug-related motivation have not been fully elucidated. Here, we show that self-administration of cocaine, but not passive cocaine infusions, produced a persistent potentiation of VTA excitatory synapses, which was still present after 3 months abstinence. Further, enhanced synaptic function in VTA was evident even after 3 weeks of extinction training. Food or sucrose self-administration induced only a transient potentiation of VTA glutamatergic signaling. Our data show that synaptic function in VTA DA neurons is readily but reversibly enhanced by natural reward-seeking behavior, while voluntary cocaine self-administration induced a persistent synaptic enhancement that is resistant to behavioral extinction. Such persistent synaptic potentiation in VTA DA neurons may represent a fundamental cellular phenomenon driving pathological drug-seeking behavior.  相似文献   

10.
The serotonin 5-HT(2C) receptor (5-HT(2C)R) is localized to the limbic-corticostriatal circuit, which plays an integral role in mediating attention, motivation, cognition, and reward processes. The 5-HT(2C)R is linked to modulation of mesoaccumbens dopamine neurotransmission via an activation of γ-aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA). However, we recently demonstrated the expression of the 5-HT(2C)R within dopamine VTA neurons suggesting the possibility of a direct influence of the 5-HT(2C)R upon mesoaccumbens dopamine output. Here, we employed double-label fluorescence immunochemistry with the synthetic enzymes for dopamine (tyrosine hydroxylase; TH) and GABA (glutamic acid decarboxylase isoform 67; GAD-67) and retrograde tract tracing with FluoroGold (FG) to uncover whether dopamine and GABA VTA neurons that possess 5-HT(2C)R innervate the nucleus accumbens (NAc). The highest numbers of FG-labeled cells were detected in the middle versus rostral and caudal levels of the VTA, and included a subset of TH- and GAD-67 immunoreactive cells, of which >50% also contained 5-HT(2C)R immunoreactivity. Thus, we demonstrate for the first time that the 5-HT(2C)R colocalizes in DA and GABA VTA neurons which project to the NAc, describe in detail the distribution of NAc-projecting GABA VTA neurons, and identify the colocalization of TH and GAD-67 in the same NAc-projecting VTA neurons. These data suggest that the 5-HT(2C)R may exert direct influence upon both dopamine and GABA VTA output to the NAc. Further, the indication that a proportion of NAc-projecting VTA neurons synthesize and potentially release both dopamine and GABA adds intriguing complexity to the framework of the VTA and its postulated neuroanatomical roles.  相似文献   

11.
The substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) are the two major mesencephalic dopaminergic systems. Mesencephalic dopamine denervation is followed by long-term modifications in striatum and cortex that preserve dopamine functions. Here, we have studied the impact of isolated bilateral 6-hydroxydopamine lesioning of the SNc or the VTA on D(1) and D(2) dopamine receptor binding in striatal and cortical areas of rat. Neither SNc nor VTA bilateral partial lesioning changed D(2) binding at the striatal or cortical level. Intriguingly, only VTA lesioning increased D(1) binding in the cortex, whereas both bilateral partial lesioning of the SNc or the VTA increased striatal D(1) binding. This suggests that increased cortical D(1) binding could be an indicator of VTA lesioning. Further behavioural experiments may explain the pathophysiological meaning of increased cortical D(1) binding, and determine whether this observation is involved in compensatory mechanisms.  相似文献   

12.
T Skarsfeldt 《Life sciences》1988,42(10):1037-1044
The effects of repeated treatment (21 days) with different antipsychotic compounds (haloperidol, clozapine, thioridazine and tefludazine) on dopamine (DA) neurones in substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) were studied in rats using single unit recording techniques. A dose-dependent decrease in the number of spontaneously active DA neurones in SNC and in VTA was observed with haloperidol. Clozapine showed no significant effect on the activity in SNC while a dose-dependent decrease in the number of active DA neurones in VTA was observed. Thioridazine showed no or weak effect in SNC while repeated treatment induced a marked inhibitory effect on the DA neurones in VTA. Tefludazine, a potential antipsychotic compound, induced a dose-dependent decrease in both SNC and VTA DA activity. However, the effect on the DA neurones in VTA was more pronounced at all doses. Since the classical neuroleptic haloperidol is equally effective in both regions, while the atypical neuroleptics clozapine and thioridazine have selective or predominant effect in the VTA area it has previously been thought that the inhibition of spontaneously active DA neurones in VTA should indicate an antipsychotic effect of a compound while the inhibition of DA neurones in SNC should account for the development of neurological side effects. The data suggests that the potential antipsychotic compound tefludazine should not induce neurological side effects at lower doses but still has an antipsychotic activity while repeated treatment with higher doses of tefludazine might cause extrapyramidal side effects.  相似文献   

13.
Progesterone (P) in both the ventromedial hypothalamus (VMH) and the ventral tegmental area (VTA) is necessary to facilitate sexual receptivity in estrogen-primed hamsters. The mechanism of P may be different in the VMH and VTA, as there are many intracellular progestin receptors (PR) in the VMH but few in the VTA. Progesterone conjugated to bovine serum albumin (P-3-BSA) does not bind well to intracellular PR or permeate the surface of neuronal membranes. However, VTA application of P-3-BSA rapidly increases sexual receptivity if P has been applied earlier to the VMH. P-3-BSA is ineffective when applied to the VMH. The membrane-limited effect of P may be related to the ability of some progestins to modulate the GABAA-benzodiazepine receptor complex (GBRC). We have found that infusions of a GABAA agonist, muscimol, into the VTA enhance and a GABAA antagonist, bicuculline, inhibit receptivity. Because P itself is not highly effective at the GBRC, and since the most potent modulators of the GBRC, the 5α-reduced progestins, do not bind well to PRs, progestin metabolites were applied to the VTA. Only the potent GBRC modulators facilitated sexual receptivity when applied to the VTA concurrent with P to the VMH. The reverse treatment, with a progestin metabolite implanted into the VMH, was ineffective. VTA infusions of an inhibitor of 5α-reductase also attenuated behavioral estrus in hamsters. These data are consistent with P facilitation of sexual receptivity being genomically mediated in the VMH, while the non-genomic actions of P in the VTA may be a result of metabolism and subsequent interaction with the GBRC.  相似文献   

14.
Wang DV  Tsien JZ 《PloS one》2011,6(1):e16528
The ventral tegmental area (VTA) plays an essential role in reward and motivation. How the dopamine (DA) and non-DA neurons in the VTA engage in motivation-based locomotor behaviors is not well understood. We recorded activity of putative DA and non-DA neurons simultaneously in the VTA of awake mice engaged in motivated voluntary movements such as wheel running. Our results revealed that VTA non-DA neurons exhibited significant rhythmic activity that was correlated with the animal's running rhythms. Activity of putative DA neurons also correlated with the movement behavior, but to a lesser degree. More importantly, putative DA neurons exhibited significant burst activation at both onset and offset of voluntary movements. These findings suggest that VTA DA and non-DA neurons conjunctively process locomotor-related motivational signals that are associated with movement initiation, maintenance and termination.  相似文献   

15.
Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age‐related effects, as adolescent rats experience lower withdrawal‐related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma‐aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate, or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal‐related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal.  相似文献   

16.
The mesolimbic reward pathway arising from dopaminergic (DA) neurons of the ventral tegmental area (VTA) has been strongly implicated in reward processing and drug abuse. In rodents, behaviors associated with this projection are profoundly influenced by an orexinergic input from the lateral hypothalamus to the VTA. Because the existence and significance of an analogous orexigenic regulatory mechanism acting in the human VTA have been elusive, here we addressed the possibility that orexinergic neurons provide direct input to DA neurons of the human VTA. Dual-label immunohistochemistry was used and orexinergic projections to the VTA and to DA neurons of the neighboring substantia nigra (SN) were analyzed comparatively in adult male humans and rats. Orexin B-immunoreactive (IR) axons apposed to tyrosine hydroxylase (TH)-IR DA and to non-DA neurons were scarce in the VTA and SN of both species. In the VTA, 15.0±2.8% of TH-IR perikarya in humans and 3.2±0.3% in rats received orexin B-IR afferent contacts. On average, 0.24±0.05 and 0.05±0.005 orexinergic appositions per TH-IR perikaryon were detected in humans and rats, respectively. The majority (86–88%) of randomly encountered orexinergic contacts targeted the dendritic compartment of DA neurons. Finally, DA neurons of the SN also received orexinergic innervation in both species. Based on the observation of five times heavier orexinergic input to TH-IR neurons of the human, compared with the rat, VTA, we propose that orexinergic mechanism acting in the VTA may play just as important roles in reward processing and drug abuse in humans, as already established well in rodents.  相似文献   

17.
Borgland SL  Taha SA  Sarti F  Fields HL  Bonci A 《Neuron》2006,49(4):589-601
Dopamine neurons in the ventral tegmental area (VTA) represent a critical site of synaptic plasticity induced by addictive drugs. Orexin/hypocretin-containing neurons in the lateral hypothalamus project to the VTA, and behavioral studies have suggested that orexin neurons play an important role in motivation, feeding, and adaptive behaviors. However, the role of orexin signaling in neural plasticity is poorly understood. The present study shows that in vitro application of orexin A induces potentiation of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission via a PLC/PKC-dependent insertion of NMDARs in VTA dopamine neuron synapses. Furthermore, in vivo administration of an orexin 1 receptor antagonist blocks locomotor sensitization to cocaine and occludes cocaine-induced potentiation of excitatory currents in VTA dopamine neurons. These results provide in vitro and in vivo evidence for a critical role of orexin signaling in the VTA in neural plasticity relevant to addiction.  相似文献   

18.
19.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

20.
The effects of lesioning the ventral tegmental area (VTA) or substantia nigra (SN) neurons by means of bilateral stereotaxic microinjections of kainic acid (KA) (0.4 mM) were investigated to clarify the role of the VTA and the SN neurons in learning and memory processes. The present study demonstrates that KA in the SN and the VTA lesioned rats significantly decreased spontaneous alternation in Y-maze task, working memory and reference memory in radial 8 arm-maze task, suggesting effects on spatial memory performance. Our findings provide further support for the role of the VTA and the SN neurons in processing and storage of information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号