首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traumatic brain injury (TBI) is recognized as the disease with high morbidity and disability around world in spite of the work ongoing in neural protection. Due to heterogeneity among the patients, it''s still hard to acquire satisfying achievements in clinic. Neuroinflammation, which exists since primary injury occurs, with elusive duality, appear to be of significance from recovery of injury to neurogenesis. In recent years, studied have revealed that communication in neurogenic niche is more than “cell to cell” communication, and study on NSCs represent it as central role in the progress of neural regeneration. Hence, the neuroinflammation-affecting crosstalk after TBI, and clarifying definitive role of NSCs in the course of regeneration is a promising subject for researchers, for its great potential in overcoming the frustrating status quo in clinic, promoting welfare of TBI patient.  相似文献   

2.
Traumatic brain injury (TBI) remains a significant clinical problem and contributes to one-third of all injury-related deaths. Activated microglia-mediated inflammatory response is a distinct characteristic underlying pathophysiology of TBI. Here, we evaluated the effect and possible mechanisms of the selective Sigma-1 receptor agonist 2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate (PRE-084) in mice TBI model. A single intraperitoneal injection 10 μg/g PRE-084, given 15 min after TBI significantly reduced lesion volume, lessened brain edema, attenuated modified neurological severity score, increased the latency time in wire hang test, and accelerated body weight recovery. Moreover, immunohistochemical analysis with Iba1 staining showed that PRE-084 lessened microglia activation. Meanwhile, PRE-084 reduced nitrosative and oxidative stress to proteins. Thus, Sigma-1 receptors play a major role in inflammatory response after TBI and may serve as useful target for TBI treatment in the future.  相似文献   

3.
Li  Xiaopeng  Wang  Bingqian  Yu  Ning  Yang  Liang  Nan  Chengrui  Sun  Zhimin  Guo  Lisi  Zhao  Zongmao 《Neurochemical research》2022,47(10):3063-3075
Neurochemical Research - Neuroinflammation plays an important role in brain tissue injury during intracerebral hemorrhage. Gabapentin can reduce inflammation and oxidative stress through inhibiting...  相似文献   

4.
目的:探究和厚朴酚是否通过激活SIRT1/FOXO1信号通路抵抗小鼠脓毒症脑损伤。方法:通过C57BL/6小鼠盲肠结扎穿孔法建立脓毒症脑损伤模型。小鼠随机分为以下6组:假手术(Sham)组;和厚朴酚处理(HKL)组;盲肠结扎穿孔(CLP)组;盲肠结扎穿孔+和厚朴酚处理(CLP+HKL)组;EX527 (SIRT1特异性抑制剂)预处理+盲肠结扎穿孔+和厚朴酚处理(CLP+HKL+EX527)组;EX527预处理+盲肠结扎穿孔(CLP+EX527)组。盲肠结扎穿孔48 h后检测脑组织内水含量、凋亡率及凋亡相关蛋白Bax、Bcl-2和cleaved Caspase-3的表达情况、炎症相关分子IL-1β与TNF-α、SIRT1信号通路相关蛋白表达情况。结果:与CLP组相比,CLP+HKL组脑组织内SIRT1的表达量及活性、Bcl-2表达量明显增加,而脑组织水含量、凋亡率、Bax、cleaved Caspase-3、IL-1β与TNF-α的表达量明显降低(均P 0.05)。EX527可明显抑制HKL的上述脑保护作用(P 0.05)。结论:和厚朴酚主要通过激活SIRT1/FOXO1信号通路,抑制凋亡与炎症,从而缓解脓毒症脑损伤。  相似文献   

5.
6.
Our study was undertaken to evaluate the important role of interleukin‐6 (IL‐6) trans‐signaling in acetaminophen (AAP)‐induced liver injury. A soluble gp130 protein (sgp130Fc) exclusively inhibits IL‐6 trans‐signaling, whereas an IL‐6/soluble IL‐6 receptor (sIL‐6R) fusion protein (hyper‐IL‐6) mimics IL‐6 trans‐signaling. Using these tools, we investigated the role of IL‐6 trans‐signaling in AAP‐induced liver injury. Blockade of IL‐6 trans‐signaling during AAP‐induced liver injury remarkably increased the levels of serum aspartate aminotransferase and alanine aminotransferase; lowered the level of serum sIL‐6R; aggravated liver injury; inhibited the expression of phosphorylation of STAT3 (pSTAT3), proliferating cell nuclear antigen, vascular endothelial growth factor, and glycogen synthesis; and induced the expression of Caspase3, cytochrome P450 2E1 (CYP2E1), and hepatocyte apoptosis in the liver of mice. In summary, our study suggested that IL‐6 trans‐signaling plays important protective roles by regulating the hepatocyte proliferation and apoptosis, angiogenesis, CYP2E1 expression, and glycogen metabolism during AAP‐induced liver injury in mice.  相似文献   

7.
RanBP9 is known to act as a scaffolding protein bringing together a variety of cell surface receptors and intracellular targets thereby regulating functions as diverse as neurite and axonal outgrowth, cell morphology, cell proliferation, myelination, gonad development, myofibrillogenesis and migration of neuronal precursors. Though RanBP9 is ubiquitously expressed in all tissues, brain is one of the organs with the highest expression levels of RanBP9. In the neurons, RanBP9 is localized mostly in the cytoplasm but also in the neurites and dendritic processes. We recently demonstrated that RanBP9 plays pathogenic role in Alzheimer’s disease. To understand the role of RanBP9 in the brain, here we generated RanBP9 null mice by gene-trap based strategy. Most of Ran−/− mice die neonatally due to defects in the brain growth and development. The major defects include smaller cortical plate (CP), robustly enlarged lateral ventricles (LV) and reduced volume of hippocampus (HI). The lethal phenotype is due to a suckling defect as evidenced by lack of milk in the stomachs even several hours after parturition. The complex somatosensory system which is required for a behavior such as suckling appears to be compromised in Ran−/− mice due to under developed CP. Most importantly, RanBP9 phenotype is similar to ERK1/2 double knockout and the neural cell adhesion receptor, L1CAM knockout mice. Both ERK1 and L1CAM interact with RanBP9. Thus, RanBP9 appears to control brain growth and development through signaling mechanisms involving ERK1 and L1CAM receptor.  相似文献   

8.
9.
Experimental studies have demonstrated significant secondary damage (including cell apoptosis, blood–brain barrier disruption, inflammatory responses, excitotoxic damage, and free radical production) after traumatic brain injury (TBI). Quercetin is a natural flavonoid found in high quantities in fruits and vegetables, and may be a potential antioxidant and free radical scavenger. The purpose of this study was to determine the effects of quercetin on TBI-induced upregulation of oxidative stress, inflammation, and apoptosis in adult Sprague–Dawley rats. Animals were subjected to Feeney’s weight-drop injury, thus inducing the parietal contusion brain injury model. Quercetin was administered (30 mg/kg intraperitoneal injection) 0, 24, 48, and 72 h after TBI. Quercetin reduced cognitive deficits, the number of TUNEL- and ED-1-positive cells, the protein expressions of Bax and cleaved-caspase-3 proteins, and the levels of TBARS and proinflammatory cytokines, and increased the activity of antioxidant enzymes (GSH-Px, SOD, and CAT) at 1 week after TBI. Our results suggest that in TBI rats, quercetin improves cognitive function owing to its neuroprotective action via the inhibition of oxidative stress, leading to a reduced inflammatory response, thereby reducing neuronal death.  相似文献   

10.
Neuroinflammation is an important pathogenesis of Parkinson’s disease (PD). The peripheral immune system could produce profound effects on central immunities. The peripheral blood monocyte (PBM) immune tolerance is the refractoriness of immune system to avoid overactive peripheral inflammation. The PBM are also actively involved in central immune activities. There is evidence implying the probable failure of immune tolerance and impairment of CD200/CD200R signaling in PD patients. Here we aimed to explore the effects of PBM tolerance in peripheral LPS-induced neuroinflammation as well as the specific roles of CD200/CD200R pathway in PBM tolerance. We found that repeated intraperitoneal administration of 0.3 mg/kg LPS was able to induce the PBM tolerance. PBM tolerance reduced peripheral LPS-induced elevation of serum TNF-α, IL-1β expression and TLR4 expression in PBM. PBM tolerance and PBM depletion alleviated peripheral LPS-induced neuroinflammation demonstrated by reduced proinflammatory cytokines in brain and blocked microglia activation. The CD200R expression in PBM was upregulated in PBM tolerance group after intraperitoneal administration of high-dose LPS in vivo and the blockade of CD200/CD200R interaction induced the failure of PBM tolerance in vitro. These results suggested the PBM tolerance could attenuate the peripheral LPS-induced neuroinflammation via upregulating the CD200R expression and the CD200/CD200R signaling played a key role in PBM tolerance. Effective regulation of the PBM in periphery may be a potential way to limit neuroinflammation while the CD200R on PBM could be used as a potential therapeutic target to alleviate neuroinflammation.  相似文献   

11.
目的:探讨局部脑损伤对小鼠海马区Bax,Bel-2基因表达的影响.方法:40只BALB/c小鼠随机等分成正常组与脑损伤组,用免疫组织化学ABC法检测小鼠海马区Bax,Bcl-2的表达情况.结果:Bax,Bcl-2的免疫性物主要分布于海马区,胞浆染色.小鼠创伤性脑损伤24小时后,神经元Bax,Bel-2的平均灰度分别为(43.6±3.3)和(54.6±4.2),低于正常组,差异有统计学意义(P<0.05).结论:脑损伤致海马区Bax,Bcl-2的表达下降.  相似文献   

12.
Toll-like receptor 4 (TLR4) has been linked to various pathophysiological conditions, such as traumatic brain injury (TBI). It is reported that posttraumatic neuroinflammation is an essential event in the progression of brain injury after TBI. Recent evidences indicate that TLR4 mediates glial phagocytic activity and inflammatory cytokines production. Thus, TLR4 may be an important therapeutic target for neuroinflammatory injury post-TBI. This study was designed to explore potential effects and underlying mechanisms of TLR4 in rats suffered from TBI. TBI model was induced using a controlled cortical impact in rats, and application of TLR4 shRNA silenced TLR4 expression in brain prior to TBI induction. Elevated TLR4 was specifically observed in the hippocampal astrocytes and neurons posttrauma. Interestingly, TLR4 shRNA decreased the concentrations of interleukin (IL)-1β, IL-6, and tissue necrosis factor-α; alleviated hippocampal neuronal damage; reduced brain edema formation; and improved neurological deficits after TBI. Meanwhile, to further explore underlying molecular mechanisms of this neuroprotective effects of TLR4 knockdown, our results showed that TLR4 knockdown significantly inhibited the upregulation of autophagy-associated proteins caused by TBI. More importantly, an autophagy inducer, rapamycin pretreated, could partially abolish neuroprotective effects of TLR4 knockdown on TBI rats. Furthermore, TLR4 silencing markedly suppressed GFAP upregulation and improved cell hypertrophy to attenuate TBI-induced astrocyte activation. Taken together, these findings suggested that TLR4 knockdown ameliorated neuroinflammatory response and brain injury after TBI through suppressing autophagy induction and astrocyte activation.  相似文献   

13.
Oligodendrocytes are responsible for producing and maintaining myelin throughout the CNS. One of the pathological features observed following traumatic brain injury (TBI) is the progressive demyelination and degeneration of axons within white matter tracts. While the effect of TBI on axonal health has been well documented, there is limited information regarding the response of oligodendrocytes within these areas. The aim of this study was to characterize the response of both mature oligodendrocytes and immature proliferative oligodendrocyte lineage cells across a 3 month timecourse following TBI. A computer-controlled cortical impact model was used to produce a focal lesion in the left motor cortex of adult mice. Immunohistochemical analyses were performed at 48 hours, 7 days, 2 weeks, 5 weeks and 3 months following injury to assess the prevalence of mature CC-1+ oligodendrocyte cell death, immature Olig2+ cell proliferation and longer term survival in the corpus callosum and external capsule. Decreased CC-1 immunoreactivity was observed in white matter adjacent to the site of injury from 2 days to 2 weeks post TBI, with ongoing mature oligodendrocyte apoptosis after this time. Conversely, proliferation of Olig2+ cells was observed as early as 48 hours post TBI and significant numbers of these cells and their progeny survived and remained in the external capsule within the injured hemisphere until at least 3 months post injury. These findings demonstrate that immature oligodendrocyte lineage cells respond to TBI by replacing oligodendrocytes lost due to damage and that this process occurs for months after injury.  相似文献   

14.
Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ) have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. Our recent studies have established a pre-clinical model in mice, and have found that the peripheral surgical wounding without the influence of general anesthesia induces an age-dependent Aβ accumulation and cognitive impairment in mice. We therefore set out to assess the effects of peripheral surgical wounding, in the absence of general anesthesia, on neuroinflammation in mice with different ages. Abdominal surgery under local anesthesia was established in 9 and 18 month-old mice. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Iba1 positive cells (the marker of microglia activation), CD33, and cognitive function in mice were determined. The peripheral surgical wounding increased the levels of TNF-α, IL-6, and Iba1 positive cells in the hippocampus of both 9 and 18 month-old mice, and age potentiated these effects. The peripheral surgical wounding increased the levels of CD33 in the hippocampus of 18, but not 9, month-old mice. Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients.  相似文献   

15.
Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide. Novel and effective therapy is needed to prevent the secondary spread of damage beyond the initial injury. The aim of this study was to investigate whether berberine has a neuroprotective effect on secondary injury post-TBI, and to explore its potential mechanism in this protection. The mice were randomly divided into Sham-saline, TBI-saline and TBI-Berberine (50 mg/kg). TBI was induced by Feeney’s weight-drop technique. Saline or berberine was administered via oral gavage starting 1 h post-TBI and continuously for 21 days. Motor coordination, spatial learning and memory were assessed using beam-walking test and Morris water maze test, respectively. Brain sections were processed for lesion volume assessment, and expression of neuronal nuclei (NeuN), cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), ionized calcium-binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) were detected via immunohistochemistry and immunofluorescence. There were statistically significant improvement in motor coordination, spatial learning and memory in the TBI-Berberine group, compared to the TBI-saline group. Treatment with berberine significantly reduced cortical lesion volume, neuronal loss, COX-2, iNOS and 8-OHdG expression in both the cortical lesion border zone (LBZ) and ipsilateral hippocampal CA1 region (CA1), compared to TBI-saline. Berberine treatment also significantly decreased Iba1- and GFAP-positive cell number in both the cortical LBZ and ipsilateral CA1, relative to saline controls. These results indicated that berberine exerted neuroprotective effects on secondary injury in mice with TBI probably through anti-oxidative and anti-inflammatory properties.  相似文献   

16.
目的:研究藏红花素对小鼠创伤性脑损伤的保护作用和可能的机制.方法:采用控制性皮层撞击法建立小鼠创伤性脑损伤模型,通过脑含水量测定和运动功能评分评价藏红花素对小鼠创伤性脑损伤的保护作用.结果:①藏红花素显著减轻创伤性脑损伤后脑水肿程度.②藏红花素显著减轻创伤性脑损伤造成的运动功能损伤.③藏红花素显著提高了脑组织SOD和GPX的活性,降低了MDA水平.结论:藏红花素通过抗氧化活性对小鼠创伤性脑损伤发挥保护作用.  相似文献   

17.
Aging is a major risk factor for common neurodegenerative diseases. Although multiple molecular, cellular, structural, and functional changes occur in the brain during aging, the involvement of caveolin-2 (Cav-2) in brain ageing remains unknown. We investigated Cav-2 expression in brains of aged mice and its effects on endothelial cells. The human umbilical vein endothelial cells (HUVECs) showed decreased THP-1 adhesion and infiltration when treated with Cav-2 siRNA compared to control siRNA. In contrast, Cav-2 overexpression increased THP-1 adhesion and infiltration in HUVECs. Increased expression of Cav-2 and iba-1 was observed in brains of old mice. Moreover, there were fewer iba-1–positive cells in the brains of aged Cav-2 knockout (KO) mice than of wild-type aged mice. The levels of several chemokines were higher in brains of aged wild-type mice than in young wild-type mice; moreover, chemokine levels were significantly lower in brains of young mice as well as aged Cav-2 KO mice than in their wild-type counterparts. Expression of PECAM1 and VE-cadherin proteins increased in brains of old wild-type mice but was barely detected in brains of young wild-type and Cav-2 KO mice. Collectively, our results suggest that Cav-2 expression increases in the endothelial cells of aged brain, and promotes leukocyte infiltration and age-associated neuroinflammation.  相似文献   

18.
Plant Molecular Biology Reporter - Global warming threatens many aspects of human life, including a reduction in crop yields, and breeding heat-tolerant crops is a fundamental way to help address...  相似文献   

19.
Vincristine (VCR) is a chemotherapeutic agent widely used in treatment of malignancies. However, VCR has a limitation in use since it commonly causes a painful neuropathy (VCR-induced peripheral neuropathy, VIPN). Inflammatory cytokines secreted by immune cells such as macrophages can exacerbate allodynia and hyperalgesia, because inhibiting the inflammatory response is a treatment target for VIPN. In this study, we investigated whether Trichinella spiralis, a widely studied helminth for its immunomodulatory abilities, can alleviate VCR-induced allodynia. Von Frey test showed that T. spiralis infection improved mechanical allodynia at 10 days after VCR injection. We further observed whether the difference was due to mitigated axon degeneration, but no significant difference between the groups in axonal degeneration in sciatic nerves and intra-epidermal nerve fibers was found. Conversely, we observed that number of infiltrated macrophages was decreased in the sciatic nerves of the T. spiralis infected mice. Moreover, treatment of T. spiralis excretory-secretory products caused peritoneal macrophages to secrete decreased level of IL-1β. This study suggests that T. spiralis can relieve VCR-induced mechanical allodynia by suppressing neuroinflammation and that application of controllable degree of helminth may prove beneficial for VIPN treatment.  相似文献   

20.
Traumatic brain injury (TBI) results in neuronal apoptosis, autophagic cell death and necroptosis. Necroptosis is a newly discovered caspases-independent programmed necrosis pathway which can be triggered by activation of death receptor. Previous works identified that necrostatin-1 (NEC-1), a specific necroptosis inhibitor, could reduce tissue damage and functional impairment through inhibiting of necroptosis process following TBI. However, the role of NEC-1 on apoptosis and autophagy after TBI is still not very clear. In this study, the amount of TBI-induced neural cell deaths were counted by PI labeling method as previously described. The expression of autophagic pathway associated proteins (Beclin-1, LC3-II, and P62) and apoptotic pathway associated proteins (Bcl-2 and caspase-3) were also respectively assessed by immunoblotting. The data showed that mice pretreated with NEC-1 reduced the amount of PI-positive cells from 12 to 48?h after TBI. Immunoblotting results showed that NEC-1 suppressed TBI-induced Beclin-1 and LC3-II activation which maintained p62 at high level. NEC-1 pretreatment also reversed TBI-induced Bcl-2 expression and caspase-3 activation, as well as the ratio of Beclin-1/Bcl-2. Both 3-MA and NEC-1 suppressed TBI-induced caspase-3 activation and LC3-II formation, Z-VAD only inhibited caspase-3 activation but increased LC3-II expression at 24?h post-TBI. All these results revealed that multiple cell death pathways participated in the development of TBI, and NEC-1 inhibited apoptosis and autophagy simultaneously. These coactions may further explain how can NEC-1 reduce TBI-induced tissue damage and functional deficits and reflect the interrelationship among necrosis, apoptosis and autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号