首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities.  相似文献   

3.
The abundance of the subarctic copepod, Calanus finmarchicus, and temperate, shelf copepod, Centropages typicus, was estimated from samples collected bi-monthly over the Northeast U.S. continental shelf (NEUS) from 1977–2010. Latitudinal variation in long term trends and seasonal patterns for the two copepod species were examined for four sub-regions: the Gulf of Maine (GOM), Georges Bank (GB), Southern New England (SNE), and Mid-Atlantic Bight (MAB). Results suggested that there was significant difference in long term variation between northern region (GOM and GB), and the MAB for both species. C. finmarchicus generally peaked in May – June throughout the entire study region and Cen. typicus had a more complex seasonal pattern. Time series analysis revealed that the peak time for Cen. typicus switched from November – December to January - March after 1985 in the MAB. The long term abundance of C. finmarchicus showed more fluctuation in the MAB than the GOM and GB, whereas the long term abundance of Cen. typicus was more variable in the GB than other sub-regions. Alongshore transport was significantly correlated with the abundance of C. finmarchicus, i.e., more water from north, higher abundance for C. finmarchicus. The abundance of Cen. typicus showed positive relationship with the Gulf Stream north wall index (GSNWI) in the GOM and GB, but the GSNWI only explained 12–15% of variation in Cen. typicus abundance. In general, the alongshore current was negatively correlated with the GSNWI, suggesting that Cen. typicus is more abundant when advection from the north is less. However, the relationship between Cen. typicus and alongshore transport was not significant. The present study highlights the importance of spatial scales in the study of marine populations: observed long term changes in the northern region were different from the south for both species.  相似文献   

4.
5.
The purpose of this investigation was to systematically examine the variability associated with temporally-oriented invertebrate data collected by citizen scientists and consider the value of such data for use in stream management. Variability in invertebrate data was estimated for three sources of variation: sampling, within-reach spatial and long-term temporal. Long-term temporal data were also evaluated using ordinations and an Index of Biotic Integrity (IBI). Through two separate investigations over an 11-year study period, participants collected more than 400 within-reach samples during 44 sampling events at three streams in the western United States. Within-reach invertebrate abundance coefficient of variation (CV) ranged from 0.44–0.50 with approximately 62% of the observed variation strictly due to sampling. Long-term temporal CV ranged from 0.31–0.36 with 27–30% of the observed variation in invertebrate abundance related to climate conditions (El Niño strength) and sampling year. Ordinations showed that citizen-generated assemblage data could reliably detect differences between study streams and seasons. IBI scores were significantly different between streams but not seasons. The findings of this study suggest that citizen data would likely detect a change in mean invertebrate density greater than 50% and would also be useful for monitoring changes in assemblage. The information presented here will help stream managers interpret and evaluate changes to the stream invertebrate community detected by citizen-based programs.  相似文献   

6.
Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0–4 years, 5–9 years, 10–14 years, and 15–19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.  相似文献   

7.
In an environment fluctuating in a predicatable manner with wide among-year variation in offspring mortality, fitness is largely influenced by the timing of reproductive investment. In vole-eating nocturnal Tengmalm's owls (Aegolius funereus), within-cycle variation in 1st-year survival of owlets is 3-fold as estimated by the recruitment probability of an offspring. It increases from the peak through the low to the increase phase of the vole cycle. We recorded prey delivery rates of males during a 3-year vole cycle using 4 h continuous recording at night. Males brought significantly more prey items per offspring in a low-vole year than in the increase and peak vole years. In the early night (10 p.m.–12 p.m.), males fed their families equally in the increase and peak vole years, whereas in the late night (0.01–2.00 a.m.) males reduced their feeding rate in the peak year but not in other years. Both prey number and prey mass per offspring were larger in the low and increase vole years than in the peak year, though in the peak phase food is most abundant. We suggest that feeding effort of site-tenacious, long-lived (mean lifespan 3.5 years) male owls culminates in the increase rather than in the peak phase of the vole cycle, because offspring survive better in the former phase.  相似文献   

8.
Wild bees form diverse communities that pollinate plants in both native and agricultural ecosystems making them both ecologically and economically important. The growing evidence of bee declines has sparked increased interest in monitoring bee community and population dynamics using standardized methods. Here, we studied the dynamics of bee biodiversity within and across years by monitoring wild bees adjacent to four apple orchard locations in Southern Pennsylvania, USA. We collected bees using passive Blue Vane traps continuously from April to October for 6 years (2014–2019) amassing over 26,000 bees representing 144 species. We quantified total abundance, richness, diversity, composition, and phylogenetic structure. There were large seasonal changes in all measures of biodiversity with month explaining an average of 72% of the variation in our models. Changes over time were less dramatic with years explaining an average of 44% of the variation in biodiversity metrics. We found declines in all measures of biodiversity especially in the last 3 years, though additional years of sampling are needed to say if changes over time are part of a larger trend. Analyses of population dynamics over time for the 40 most abundant species indicate that about one third of species showed at least some evidence for declines in abundance. Bee family explained variation in species‐level seasonal patterns but we found no consistent family‐level patterns in declines, though bumble bees and sweat bees were groups that declined the most. Overall, our results show that season‐wide standardized sampling across multiple years can reveal nuanced patterns in bee biodiversity, phenological patterns of bees, and population trends over time of many co‐occurring species. These datasets could be used to quantify the relative effects that different aspects of environmental change have on bee communities and to help identify species of conservation concern.  相似文献   

9.
10.
11.
Freshwater habitats have been identified as one of the largest reservoirs of archaeal genetic diversity, with specific lineages of ammonia-oxidizing archaea (AOA) populations different from soils and seas. The ecology and biology of lacustrine AOA is, however, poorly known. In the present study, vertical changes in archaeal abundance by CARD-FISH, quantitative PCR (qPCR) analyses and identity by clone libraries were correlated with environmental parameters in the deep glacial high-altitude Lake Redon. The lake is located in the central Spanish Pyrenees where atmospheric depositions are the main source of reactive nitrogen. Strong correlations were found between abundance of thaumarchaeotal 16S rRNA gene, archaeal amoA gene and nitrite concentrations, indicating an ammonium oxidation potential by these microorganisms. The bacterial amoA gene was not detected. Three depths with potential ammonia-oxidation activity were unveiled along the vertical gradient, (i) on the top of the lake in winter–spring (that is, the 0 oC slush layers above the ice-covered sheet), (ii) at the thermocline and (iii) the bottom waters in summer—autumn. Overall, up to 90% of the 16S rRNA gene sequences matched Thaumarchaeota, mostly from both the Marine Group (MG) 1.1a (Nitrosoarchaeum-like) and the sister clade SAGMGC−1 (Nitrosotalea-like). Clone-libraries analysis showed the two clades changed their relative abundances with water depth being higher in surface and lower in depth for SAGMGC−1 than for MG 1.1a, reflecting a vertical phylogenetic segregation. Overall, the relative abundance and recurrent appearance of SAGMGC−1 suggests a significant environmental role of this clade in alpine lakes. These results expand the set of ecological and thermal conditions where Thaumarchaeota are distributed, unveiling vertical positioning in the water column as a key factor to understand the ecology of different thaumarchaeotal clades in lacustrine environments.  相似文献   

12.
13.
Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.  相似文献   

14.
A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, β-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.  相似文献   

15.
16.
17.
18.
Ammonia oxidation, the first step in nitrification, is performed by certain Beta- and Gammaproteobacteria and Crenarchaea to generate metabolic energy. Ammonia monooxygenase (amoA) genes from both Bacteria and Crenarchaea have been found in a variety of marine ecosystems, but the relative importance of Bacteria versus Crenarchaea in ammonia oxidation is unresolved, and seasonal comparisons are rare. In this study, we compared the abundance of betaproteobacterial and crenarchaeal amoA genes in the coastal Arctic Ocean during summer and winter over 2 years. Summer and winter betaproteobacterial amoA clone libraries were significantly different, although the gene sequences were similar to those found in temperate and polar environments. Betaproteobacterial and crenarchaeal amoA genes were 30- to 115-fold more abundant during the winter than during the summer in both years of the study. Archaeal amoA genes were more abundant than betaproteobacterial amoA genes in the first year, but betaproteobacterial amoA was more abundant than archaeal amoA the following year. The ratio of archaeal amoA gene copies to marine group I crenarchaeal 16S rRNA genes averaged 2.9 over both seasons and years, suggesting that ammonia oxidation was common in Crenarchaea at this location. Potential nitrification rates, as well as the total amoA gene abundance, were highest in the winter when competition with phytoplankton was minimal and ammonium concentrations were the highest. These results suggest that ammonium concentrations were important in determining the rates of ammonia oxidation and the abundance of ammonia-oxidizing Betaproteobacteria and Crenarchaea.  相似文献   

19.

Background

Although there was a report about the seasonal variation in Wuhan city, it only analyzed the prevalence data of pulmonary tuberculosis (TB) cases, and just studied the seasonality by subgroup of smear positive and negative from 2006 to 2010 by spectral analysis. In this study, we investigated the seasonality of the total newly notified pulmonary TB cases by subgroups such as time period, sex, age, occupation, district, and sputum smear result from 2004 to 2013 in Wuhan by a popular seasonal adjustment model (TRAMO-SEATS).

Methods

Monthly pulmonary TB cases from 2004 to 2013 in Wuhan were analyzed by the TRAMO-SEATS seasonal adjustment program. Seasonal amplitude was calculated and compared within the subgroups.

Results

From 2004 to 2013, there were 77.76 thousand newly notified pulmonary TB cases in Wuhan, China. There was a dominant peak spring peak (March) with seasonal amplitude of 56.81% and a second summer peak (September) of 43.40%, compared with the trough month (December). The spring seasonal amplitude in 2004–2008 was higher than that of 2009–2013(P<0.05). There were no statistical differences for spring seasonal amplitude within subgroups of gender, age, district, and sputum smear result (P>0.05). However, there were significant differences in spring seasonal amplitude by occupation, with amplitude ranging from 59.37% to 113.22% (P<0.05). The summer seasonal amplitude in 2004–2008 was higher than that of 2009–2013(P<0.05). There were no statistical differences in summer seasonal amplitude within subgroups of gender, district, sputum smear result(P>0.05). There were significant differences in summer seasonal amplitude by age, with amplitude ranging from 36.05% to 100.09% (P<0.05). Also, there were significant differences in summer seasonal amplitude by occupation, with amplitude ranging from 43.40% to 109.88% (P<0.05).

Conclusions

There was an apparent seasonal variation in pulmonary TB cases in Wuhan. We speculated that spring peak in our study was most likely caused by the increased reactivation of the latent TB due to vitamin D deficiency and high PM2.5 concentration, while the summer peak was mainly resulted from the enhanced winter transmission due to indoor crowding in winter, overcrowding of public transportation over the period of the Spring Festival and health care seeking delay in winter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号