首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.  相似文献   

2.
Traditional methods to detect the spoilage yeast Dekkera bruxellensis from wine involve lengthy enrichments. To overcome this difficulty, we developed a quantitative real-time PCR method to directly detect and enumerate D. bruxellensis in wine. Specific PCR primers to D. bruxellensis were designed to the 26S rRNA gene, and nontarget yeast and bacteria common to the winery environment were not amplified. The assay was linear over a range of cell concentrations (6 log units) and could detect as little as 1 cell per ml in wine. The addition of large amounts of nontarget yeasts did not impact the efficiency of the assay. This method will be helpful to identify possible routes of D. bruxellensis infection in winery environments. Moreover, the time involved in performing the assay (3 h) should enable winemakers to more quickly make wine processing decisions in order to reduce the threat of spoilage by D. bruxellensis.  相似文献   

3.
When the genome organizations of 30 native isolates belonging to a wine spoilage yeast, Dekkera (Brettanomyces) bruxellensis, a distant relative of Saccharomyces cerevisiae, were examined, the numbers of chromosomes varied drastically, from 4 to at least 9. When single gene probes were used in Southern analysis, the corresponding genes usually mapped to at least two chromosomal bands, excluding a simple haploid organization of the genome. When different loci were sequenced, in most cases, several different haplotypes were obtained for each single isolate, and they belonged to two subtypes. Phylogenetic reconstruction using haplotypes revealed that the sequences from different isolates belonging to one subtype were more similar to each other than to the sequences belonging to the other subtype within the isolate. Reanalysis of the genome sequence also confirmed that partially sequenced strain Y879 is not a simple haploid and that its genome contains approximately 1% polymorphic sites. The present situation could be explained by (i) a hybridization event where two similar but different genomes have recently fused together or (ii) an event where the diploid progenitor of all analyzed strains lost a regular sexual cycle, and the genome started to accumulate mutations.Recent achievements in genome sequencing have revealed that gene contents vary among distantly related organisms but are relatively constant among closely related species. For example, among hemiascomycete yeasts, which originated more than 250 million years ago and include well-studied yeasts such as Saccharomyces cerevisiae and Candida albicans (3, 4), an average genome contains approximately 5,000 genes. Approximately one-half of the protein-coding gene families are preserved in all of the yeasts sequenced to date. However, there is a large variation in the gene order and configuration of chromosomes among different species.Chromosome configuration is usually well preserved among populations belonging to the same species. Only rarely do geographically separated populations, for example, Mus musculus (8, 32), differ in the number and form of chromosomes. The mutability of the genome enhances the adaptability of the species, but it also decreases the viability of the new variant. In addition, these changes can preclude successful reproduction and can be a decisive factor in the emergence of new species (2; for a review, see references 6 and 7).Among closely related yeasts belonging to the Saccharomyces sensu stricto clade (including S. cerevisiae), which originated approximately 20 million years ago, the gene contents are relatively similar (13). Their genomes are almost colinear and consist of 16 chromosomes. Some inter- and intraspecific variations are observed predominantly at the chromosome ends (18, 19). Sensu stricto species are semifertile, meaning that they can successfully mate and produce F1 offspring but that the hybrids are largely sterile. It appears that this clade has still not completed the speciation process (7). The relatively low chromosome variability among Saccharomyces sensu stricto yeasts is probably promoted by regular sexual cycles. These yeasts are diploid, but heterozygosity is almost absent because of the homothallic life-style, which enables haploid spores from the same yeast cell to mate. Only for “sterile” hybrids, such as the lager brewing yeast Saccharomyces pastorianus (Saccharomyces carlsbergensis), originating upon the mating of two different species, has a pronounced heterozygosity been observed (14). The parental genomes came from S. cerevisiae and a close relative, Saccharomyces bayanus. A study of allotetraploid hybrids between a diploid S. cerevisiae strain and a diploid S. bayanus strain demonstrated that these hybrids behave essentially as diploids regarding meiosis and sporulation and had 77% spore viability (1, 22). The extent of intra- and interspecific genome variability is not well known for other yeasts, especially among distant relatives of S. cerevisiae. The only well-studied exception is a pathogen, Candida albicans, that is believed to be predominantly asexual. This yeast diverged from the S. cerevisiae lineage prior to the origin of the efficient homothallic life-style (reviewed in reference 25). The genome is diploid and shows a low level of heterozygosity (12), and large variations in the configurations of the chromosomes among different isolates have been reported (reviewed in reference 29).Dekkera bruxellensis is often isolated in wineries and is well known as a major microbial cause of wine spoilage. The lineages of D. bruxellensis and S. cerevisiae separated at approximately the same time as the lineages of S. cerevisiae and C. albicans separated, approximately 200 million years ago (40). However, D. bruxellensis and S. cerevisiae share several characteristics, such as the production of ethanol, the ability to propagate in the absence of oxygen (anaerobic growth), and petite positivity (the ability to produce offspring without mitochondrial DNA [mtDNA]), that are rarely found among other yeasts (16, 20). So far, a sexual cycle in D. bruxellensis has not been found.In this paper, we analyzed the genome structures of 30 isolates of D. bruxellensis originating from different geographical localities around the world. We show that these isolates have different numbers and sizes of chromosomes and also that the numbers of copies of several analyzed genes and their sequences vary. In addition, we could detect heterozygosity in the partial genome sequence of strain Y879.  相似文献   

4.
Morishima K  Yoshikawa H  Arai K 《Heredity》2008,100(6):581-586
Triploid loaches Misgurnus anguillicaudatus are derived from unreduced diploid gametes produced by an asexual clonal lineage that normally undergoes gynogenetic reproduction. Here, we have investigated the reproductive system of two types of triploids: the first type carried maternally inherited clonal diploid genomes and a paternally inherited haploid genome from the same population; the second type had the same clonal diploid genomes but a haploid genome from another, genetically divergent population. The germinal vesicles of oocytes from triploid females (3n=75) contained only 25 bivalents, that is, 50 chromosomes. Flow cytometry revealed that the majority of the progeny resulting from fertilization of eggs from triploid females with normal haploid sperm were diploid. This indicates that triploid females mainly produced haploid eggs. Microsatellite analyses of the diploid progeny of triploid females showed that one allele of the clonal genotype was not transmitted to haploid eggs. Moreover, the identity of the eliminated allele differed between the two types of triploids. Our results demonstrate that there is preferential pairing of homologous chromosomes as well as the elimination of unmatched chromosomes in the course of haploid egg formation, that is, meiotic hybridogenesis. Two distinct genomes in the clone suggest its hybrid origin.  相似文献   

5.
Two yeast isolates, a wine-making yeast first identified as a Mel+ strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes. Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene fragments, and the sequence analysis of a part of the two MET2 gene alleles found support the notion that these two strains constitute hybrids between Saccharomyces cerevisiae and Saccharomyces bayanus. The two hybrid strains had completely different restriction patterns of mitochondrial DNA as well as different sequences of the OLI1 gene. The sequence of the OLI1 gene from the wine hybrid strain appeared to be the same as that of the S. cerevisiae gene, whereas the OLI1 gene of the cider hybrid strain is equally divergent from both putative parents, S. bayanus and S. cerevisiae. Some fermentative properties were also examined, and one phenotype was found to reflect the hybrid nature of these two strains. The origin and nature of such hybridization events are discussed.  相似文献   

6.
The ploidies and sporulation abilities of six brewer's yeasts were examined. One (YB11-1) out of the six was triploid and sporulating, another (IFO2031) was haploid, and the others (IFO1167, IFO2003, S341 and YB3-7) were diploid and non-sporulating. The five non-sporulating strains did not have the premeiotic DNA synthesis. Their non-sporulating phenotypes were genetically analyzed by examining the sporulation abilities of hybrids between brewer's yeasts and standard genetic strains of Saccharomyces cerevisiae. All non-sporulating brewer's yeasts complemented 32 sporulation-deficient mutations (spoT–spoT23, spo1–spo5, spo7, spo8, spo10, and spo11). Hybrids between brewer's yeasts and haploid or diploid strains homozygous for the mating-type locus had poor or no sporualtion. On the contrary, hybrids between brewer's yeasts and diploid strains heterozygous for the mating-type locus sporulated at a high frequency. These results indicated that the non-sporulating phenotype of brewer's yeasts was caused by a deficiency of the mating-type genes rather than by mutations of sporulation genes. The Southern hybridization probed with the MATa gene showed polymorphisms in mating-type genes of brewer's yeasts.  相似文献   

7.
Summary Transport and utilization of malic acid by the yeast Hansenula anomala are subject to glucose repression. Derepressed diploid mutant strains were obtained by hybridization of derepressed haploid mutant strains of opposite mating type. Six diploid mutant strains displayed derepressed behaviour with respect to malic acid utilization in the presence of glucose up to 30% (w/v). Three of these diploid mutant strains, as compared with the parent strain, were able to degrade completely malic acid in grape juice without fermenting the sugars. In addition, using one diploid mutant strain together with a strain of the wine yeast Saccharomyces cerevisiae, it was possible to carry out a mixedmicrovinification in which deacidification occurred simultaneously with alcoholic fermentation.  相似文献   

8.
Crandall M  Caulton JH 《Genetics》1979,93(4):903-916
Diploids of the yeast Hansenula wingei are nonagglutinative and do not form zygotes in mixed cultures with either sexually agglutinative haploid mating type. However, a low frequency of diploid x haploid cell fusions (about 10-3) is detectable by prototrophic selection. This frequency of rare diploid x haploid matings is not increased after the diploid culture is induced for sexual agglutination. Therefore, we conclude that genes that repress mating are different from those that repress sexual agglutination.——Six prototrophs isolated from one diploid x haploid cross had an average DNA value (µg DNA per 108 cells) of 6.19, compared to 2.53 and 4.35 for the haploid and diploid strains, respectively. Four prototrophs were clearly cell-fusion products because they contained genes from both the diploid and the haploid partners. However, genetic analysis of the prototrophs yielded results inconsistent with triploid meiosis; all six isolates yielded a 2:2 segregation for the mating-type alleles and linked genes.——Mitotic segregation of monosomic (2n-1) cells lacking one homolog of the chromosome carrying the mating-type locus is proposed to explain the rare production of sexually active cells in the diploid cultures. Fusion between such monosomic cells and normal haploids is thought to have produced 3n-1 cells, disomic for the chromosome carrying the mating-type locus. We conclude that in the diploid strain we studied, the physiological mechanisms repressing sexual agglutination and conjugation function efficiently, but events occuring during mitosis lead to a low frequency of genetically altered cells in the population.  相似文献   

9.
NUCLEAR GENE DOSAGE EFFECTS ON MITOCHONDRIAL MASS AND DNA   总被引:6,自引:2,他引:4       下载免费PDF全文
In order to assess the effect of nuclear gene dosage on the regulation of mitochondria we have studied serial sections of a set of isogenic haploid and diploid cells of Saccharomyces cerevisiae, growing exponentially in the absence of catabolite repression, and determined the amount of mitochondrial DNA per cell. Mitochondria accounted for 14% of the cytoplasmic and 12% of the total cellular volume in all cells examined regardless of their ploidy or their apparent stage in the cell cycle. The mean number of mitochondria per cell was 22 in the diploid and 10 in the haploids. The volume distribution appeared unimodal and identical in haploids and diploids. The mitochondrial DNA accounted for 12.6 ± 1.2% and 13.5 ± 1.3% of the total cellular DNA in the diploid and haploid populations, respectively. These values correspond to 3.6 x 10-15 g, 2.2 x 109 daltons, or 44 genomes (50 x 106 daltons each) per haploid and twice that per diploid cell. On this basis, the average mitochondrion in these cells contains four mitochondrial genomes in both the haploid and the diploid.  相似文献   

10.
Genotypic and technological characterisation of the S. cerevisiae population isolated in a biodynamic winery in the Cortona DOC area was performed to gain better knowledge of the variables that influence winemaking. The oenological performance of 11 S. cerevisiae strains was evaluated with physiological tests; strain typing was performed through analysis of interdelta sequences and 26S rDNA sequencing. The analysis revealed a remarkable variability in terms of S. cerevisiae strains, despite the homogeneity of wine features, underlining the high levels of biodiversity characterising biodynamic agriculture. Some strains were found in wines of different vintages, suggesting the presence of an established microbiota in the winery. Oenological tests demonstrated that while some yeasts provided reliable oenological performance, other strains were not able to accomplish prompt and effective alcoholic fermentation, or were characterised by spoilage characteristics, such as excessive production of volatile phenols or acetic acid. Indigenous strains of S. cerevisiae could be a useful instrument for reliable winemaking without altering the native microbiota of each oenological environment. However, characterisation of their oenological suitability, and the application of practices able to drive the evolution of microbiota, must be employed to reduce the risk of wine spoilage.  相似文献   

11.
Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.  相似文献   

12.
Prions (infectious proteins) cause fatal neurodegenerative diseases in mammals. In the yeast Saccharomyces cerevisiae, many toxic and lethal variants of the [PSI+] and [URE3] prions have been identified in laboratory strains, although some commonly studied variants do not seem to impair cell growth. Phylogenetic analysis has revealed four major clades of S. cerevisiae that share histories of two prion proteins and largely correspond to different ecological niches of yeast. The [PIN+] prion was most prevalent in commercialized niches, infrequent among wine/vineyard strains, and not observed in ancestral isolates. As previously reported, the [PSI+] and [URE3] prions are not found in any of these strains. Patterns of heterozygosity revealed genetic mosaicism and indicated extensive outcrossing among divergent strains in commercialized environments. In contrast, ancestral isolates were all homozygous and wine/vineyard strains were closely related to each other and largely homozygous. Cellular growth patterns were highly variable within and among clades, although ancestral isolates were the most efficient sporulators and domesticated strains showed greater tendencies for flocculation. [PIN+]-infected strains had a significantly higher likelihood of polyploidy, showed a higher propensity for flocculation compared to uninfected strains, and had higher sporulation efficiencies compared to domesticated, uninfected strains. Extensive phenotypic variability among strains from different environments suggests that S. cerevisiae is a niche generalist and that most wild strains are able to switch from asexual to sexual and from unicellular to multicellular growth in response to environmental conditions. Our data suggest that outbreeding and multicellular growth patterns adapted for domesticated environments are ecological risk factors for the [PIN+] prion in wild yeast.  相似文献   

13.
A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.  相似文献   

14.
In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.  相似文献   

15.
An ecological study of Saccharomyces cerevisiae strains in spontaneous alcoholic fermentation has been made in the same winery on two consecutive years (1993 and 1994) with Merlot type musts, and with Malbec type must on a third year (1998). Saccharomyces cerevisiae strains associated with winery surfaces were also analysed. Differential killer sensitivity patterns related to a killer reference panel of 10 killer yeasts belonging to nine species of four genera were used as a quick and simple procedure to discriminate between indigenous S. cerevisiae isolates at the strain level. Although a great diversity of wild strains was observed, two main indigenous S. cerevisiae strains, designated as S. cerevisiae 9 and S. cerevisiae 13, took over the Merlot type fermentation in both years. These strains also appeared in Malbec must fermentation during the year 1998 and they were again found on the winery surface the next year. These results show that some few and stable indigenous S. cerevisiae strains remained in the environmental winery over the considered period of time (1993–1999) and they represent an additional evidence of the taking over of musts by local strains of S. cerevisiae.  相似文献   

16.
The goal of this research was to construct a stable and efficient process for the production of ethanol from raw starch, using a recombinant Saccharomyces cerevisiae, which is productive even under conditions such as non-selection or long-term operation. Three recombinant yeast strains were used, two haploid strains (MT8-1SS and NBRC1440SS) and one diploid strain (MN8140SS). The recombinant strains were constructed by integrating the glucoamylase gene from Rhizopus oryzae fused with the 3′-half of the α-agglutinin gene as the anchor protein, and the α-amylase gene from Streptococcus bovis, respectively, into their chromosomal DNA by homologous recombination. The diploid strain MN8140SS was constructed by mating these opposite types of integrant haploid strains in order to enhance the expression of integrated amylase genes. The diploid strain had the highest ethanol productivity and reusability during fermentation from raw starch. Moreover, the ethanol production rate of the integrant diploid strain was maintained when batch fermentation was repeated three times (0.67, 0.60, and 0.67 g/l/h in each batch). These results clearly show that a diploid strain developed by mating two integrant haploid strains is useful for the establishment of an efficient ethanol production process.  相似文献   

17.
Protozoan parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis is endemic in Ethiopia where it has also been responsible for fatal epidemics. It is postulated that genetic exchange in Leishmania has implications for heterosis (hybrid vigour), spread of virulent strains, resistance to chemotherapeutics, and exploitation of different hosts and vectors. Here we analyse 11 natural Ethiopian Leishmania donovani isolates consisting of four putative hybrids, seven parent-like isolates and over 90 derived biological clones. We apply a novel combination of high resolution multilocus microsatellite typing (five loci) and multilocus sequence typing (four loci) that together distinguish parent-like and hybrid L. donovani strains. Results indicate that the four isolates (and their associated biological clones) are genetic hybrids, not the results of mixed infections, each possessing heterozygous markers consistent with inheritance of divergent alleles from genetically distinct Ethiopian L. donovani lineages. The allelic profiles of the putative hybrids may have arisen from a single hybridisation event followed by inbreeding or gene conversion, or alternatively from two or more hybridisation events. Mitochondrial sequencing showed uniparental maxicircle inheritance for all of the hybrids, each possessing a single mitochondrial genotype. Fluorescence activated cell sorting analysis of DNA content demonstrated that all hybrids and their associated clones were diploid. Together the data imply that intra-specific genetic exchange is a recurrent feature of natural L. donovani populations, with substantial implications for the phyloepidemiology of Leishmania.  相似文献   

18.
Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis.  相似文献   

19.
Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.  相似文献   

20.
A salt-tolerant mutant was derived from a haploid yeast, Saccharomyces cerevisiae DKD-5D-H, through repeated mutations with ethyl methanesulfonate. The mutant showed decreased cell size and could grow in the presence of NaCl up to 10%. A similar mutation method was also used to induce salt-tolerance in a diploid yeast, S. cerevisiae Kyokai no. 7. The mutant of the strain showed drastically decreased cell size, almost comparable with that of bacteria, and was resistant to NaCl up to 18%. These two mutation studies on haploid and diploid yeast strains indicated that the salt-tolerance was acquired through the decrease in yeast cell size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号