首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.  相似文献   

2.
Zhang J  Gao Q  Li P  Liu X  Jia Y  Wu W  Li J  Dong S  Koseki H  Wong J 《Cell research》2011,21(12):1723-1739
Recent studies demonstrate that UHRF1 is required for DNA methylation maintenance by targeting DNMT1 to DNA replication foci, presumably through its unique hemi-methylated DNA-binding activity and interaction with DNMT1. UHRF2, another member of the UHRF family proteins, is highly similar to UHRF1 in both sequence and structure, raising questions about its role in DNA methylation. In this study, we demonstrate that, like UHRF1, UHRF2 also binds preferentially to methylated histone H3 lysine 9 (H3K9) through its conserved tudor domain and hemi-methylated DNA through the SET and Ring associated domain. Like UHRF1, UHRF2 is enriched in pericentric heterochromatin. The heterochromatin localization depends to large extent on its methylated H3K9-binding activity and to less extent on its methylated DNA-binding activity. Coimmunoprecipitation experiments demonstrate that both UHRF1 and UHRF2 interact with DNMT1, DNMT3a, DNMT3b and G9a. Despite all these conserved functions, we find that UHRF2 is not able to rescue the DNA methylation defect in Uhrf1 null mouse embryonic stem cells. This can be attributed to the inability for UHRF2 to recruit DNMT1 to replication foci during S phase of the cell cycle. Indeed, we find that while UHRF1 interacts with DNMT1 in an S phase-dependent manner in cells, UHRF2 does not. Thus, our study demonstrates that UHRF2 and UHRF1 are not functionally redundant in DNA methylation maintenance and reveals the cell-cycle-dependent interaction between UHRF1 and DNMT1 as a key regulatory mechanism targeting DNMT1 for DNA methylation.  相似文献   

3.
Structure and hemimethylated CpG binding of the SRA domain from human UHRF1   总被引:1,自引:0,他引:1  
Human UHRF1 (ubiquitin-like PHD and RING finger 1) functions to maintain CpG DNA methylation patterns through DNA replication by co-localizing with the DNA methyltransferase DNMT1 at chromatin in mammals. Recent studies show that UHRF1 binds selectively to hemimethylated CpG via its conserved SRA (SET- and RING finger-associated) domain. However, the underlying molecular mechanism is not known. Here, we report a 1.95 A resolution crystal structure of the SRA domain of human UHRF1. Using NMR structure-guided mutagenesis, electrophoretic mobility shift assay, and fluorescence anisotropy analysis, we determined key amino acid residues for methyl-DNA binding that are conserved in the SRA domain.  相似文献   

4.
The maintenance of DNA methylation in nascent DNA is a critical event for numerous biological processes. Following DNA replication, DNMT1 is the key enzyme that strictly copies the methylation pattern from the parental strand to the nascent DNA. However, the mechanism underlying this highly specific event is not thoroughly understood. In this study, we identified topoisomerase IIα (TopoIIα) as a novel regulator of the maintenance DNA methylation. UHRF1, a protein important for global DNA methylation, interacts with TopoIIα and regulates its localization to hemimethylated DNA. TopoIIα decatenates the hemimethylated DNA following replication, which might facilitate the methylation of the nascent strand by DNMT1. Inhibiting this activity impairs DNA methylation at multiple genomic loci. We have uncovered a novel mechanism during the maintenance of DNA methylation.  相似文献   

5.
Dnmt1 is responsible for the maintenance DNA methylation during replication to propagate methylation patterns to the next generation. The replication foci targeting sequence (RFTS), which plugs the catalytic pocket, is necessary for recruitment of Dnmt1 to the replication site. In the present study we found that the DNA methylation activity of Dnmt1 was DNA length-dependent and scarcely methylated 12-bp short hemi-methylated DNA. Contrarily, the RFTS-deleted Dnmt1 and Dnmt1 mutants that destroyed the hydrogen bonds between the RFTS and catalytic domain showed significant DNA methylation activity even toward 12-bp hemi-methylated DNA. The DNA methylation activity of the RFTS-deleted Dnmt1 toward 12-bp hemi-methylated DNA was strongly inhibited on the addition of RFTS, but to a lesser extent by Dnmt1 harboring the mutations that impair the hydrogen bond formation. The SRA domain of Uhrf1, which is a prerequisite factor for maintenance methylation and selectively binds to hemi-methylated DNA, stimulated the DNA methylation activity of Dnmt1. The SRA to Dnmt1 concentration ratio was the determinant for the maximum stimulation. In addition, a mutant SRA, which had lost the DNA binding activity but was able to bind to Dnmt1, stimulated the DNA methylation activity of Dnmt1. The results indicate that the DNA methylation activity of Dnmt1 was stimulated on the direct interaction of the SRA and Dnmt1. The SRA facilitated acceptance of the 12-bp fluorocytosine-containing DNA by the catalytic center. We propose that the SRA removes the RFTS plug from the catalytic pocket to facilitate DNA acceptance by the catalytic center.  相似文献   

6.
LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.  相似文献   

7.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase alpha activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

8.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase a activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

9.
The DNMT1 target recognition domain resides in the N terminus   总被引:7,自引:0,他引:7  
DNA-cytosine-5-methyltransferase 1 (DNMT1) is the enzyme believed to be responsible for maintaining the epigenetic information encoded by DNA methylation patterns. The target recognition domain of DNMT1, the domain responsible for recognizing hemimethylated CGs, is unknown. However, based on homology with bacterial cytosine DNA methyltransferases it has been postulated that the entire catalytic domain, including the target recognition domain, is localized to 500 amino acids at the C terminus of the protein. The N-terminal domain has been postulated to have a regulatory role, and it has been suggested that the mammalian DNMT1 is a fusion of a prokaryotic methyltransferase and a mammalian DNA-binding protein. Using a combination of in vitro translation of different DNMT1 deletion mutant peptides and a solid-state hemimethylated substrate, we show that the target recognition domain of DNMT1 resides in the N terminus (amino acids 122-417) in proximity to the proliferating cell nuclear antigen binding site. Hemimethylated CGs were not recognized specifically by the postulated catalytic domain. We have previously shown that the hemimethylated substrates utilized here act as DNMT1 antagonists and inhibit DNA replication. Our results now indicate that the DNMT1-PCNA interaction can be disrupted by substrate binding to the DNMT1 N terminus. These results point toward new directions in our understanding of the structure-function of DNMT1.  相似文献   

10.
DNA methylation and histone modifications play a central role in the epigenetic regulation of gene expression and cell differentiation. Recently, Np95 (also known as UHRF1 or ICBP90) has been found to interact with Dnmt1 and to bind hemimethylated DNA, indicating together with genetic studies a central role in the maintenance of DNA methylation. Using in vitro binding assays we observed a weak preference of Np95 and its SRA (SET- and Ring-associated) domain for hemimethylated CpG sites. However, the binding kinetics of Np95 in living cells was not affected by the complete loss of genomic methylation. Investigating further links with heterochromatin, we could show that Np95 preferentially binds histone H3 N-terminal tails with trimethylated (H3K9me3) but not acetylated lysine 9 via a tandem Tudor domain. This domain contains three highly conserved aromatic amino acids that form an aromatic cage similar to the one binding H3K9me3 in the chromodomain of HP1ß. Mutations targeting the aromatic cage of the Np95 tandem Tudor domain (Y188A and Y191A) abolished specific H3 histone tail binding. These multiple interactions of the multi-domain protein Np95 with hemimethylated DNA and repressive histone marks as well as with DNA and histone methyltransferases integrate the two major epigenetic silencing pathways.  相似文献   

11.
12.
13.
Human multi-domain-containing protein UHRF1 has recently been extensively characterized as a key epigenetic regulator for maintaining DNA methylation patterns. UHRF1 SRA domain preferentially binds to hemimethylated CpG sites, and double Tudor domain has been implicated in recognizing H3K9me3 mark, but the role of the adjacent PHD finger remains unclear. Here, we report the high-resolution crystal structure of UHRF1 PHD finger in complex with N-terminal tail of histone H3. We found that the preceding zinc-Cys4 knuckle is indispensable for the PHD finger of UHRF1 to recognize the first four unmodified residues of histone H3 N-terminal tail. Quantitative binding studies indicated that UHRF1 PHD finger (including the preceding zinc-Cys4 knuckle) acts together with the adjacent double Tudor domain to specifically recognize the H3K9me3 mark. Combinatorial recognition of H3K9me3-containing histone H3 tail by UHRF1 PHD finger and double Tudor domain may play a role in establishing and maintaining histone H3K9 methylation patterns during the cell cycle.  相似文献   

14.
DNA cytosine methylation is one of the major epigenetic gene silencing marks in the human genome facilitated by DNA methyltransferases. DNA cytosine-5 methyltransferase 1 (DNMT1) performs maintenance methylation in somatic cells. In cancer cells, DNMT1 is responsible for the aberrant hypermethylation of CpG islands and the silencing of tumor suppressor genes. Here we show that the catalytically active recombinant DNMT1, lacking 580 amino acids from the amino terminus, binds to unmethylated DNA with higher affinity than hemimethylated or methylated DNA. To further understand the binding domain of enzyme, we have used gel shift assay. We have demonstrated that the CXXC region (C is cysteine; X is any amino acid) of DNMT1 bound specifically to unmethylated CpG dinucleotides. Furthermore, mutation of the conserved cysteines abolished CXXC mediated DNA binding. In transfected COS-7 cells, CXXC deleted DNMT1 (DNMT1 (DeltaCXXC)) localized on replication foci. Both point mutant and DNMT1 (DeltaCXXC) enzyme displayed significant reduction in catalytic activity, confirming that this domain is crucial for enzymatic activity. A permanent cell line with DNMT1 (DeltaCXXC) displayed partial loss of genomic methylation on rDNA loci, despite the presence of endogenous wild-type enzyme. Thus, the CXXC domain encompassing the amino terminus region of DNMT1 cooperates with the catalytic domain for DNA methyltransferase activity.  相似文献   

15.
16.
DNA methylation plays a central role in the epigenetic regulation of gene expression in vertebrates. Genetic and biochemical data indicated that DNA methyltransferase 1 (Dnmt1) is indispensable for the maintenance of DNA methylation patterns in mice, but targeting of the DNMT1 locus in human HCT116 tumor cells had only minor effects on genomic methylation and cell viability. In this study, we identified an alternative splicing in these cells that bypasses the disrupting selective marker and results in a catalytically active DNMT1 protein lacking the proliferating cell nuclear antigen-binding domain required for association with the replication machinery. Using a mechanism-based trapping assay, we show that this truncated DNMT1 protein displays only twofold reduced postreplicative DNA methylation maintenance activity in vivo. RNA interference-mediated knockdown of this truncated DNMT1 results in global genomic hypomethylation and cell death. These results indicate that DNMT1 is essential in mouse and human cells, but direct coupling of the replication of genetic and epigenetic information is not strictly required.  相似文献   

17.
The 5-methylcytosine (5mC) modification regulates multiple cellular processes and is faithfully maintained following DNA replication. In addition to DNA methyltransferase (DNMT) family proteins, ubiquitin-like PHD and ring finger domain-containing protein 1 (UHRF1) plays an important role in the maintenance of 5mC levels. Loss of UHRF1 abolishes 5mC in cells and leads to embryonic lethality in mice. Interestingly, UHRF1 has a paralog, UHRF2, that has similar sequence and domain architecture, but its biologic function is not clear. Here, we have generated Uhrf2 knockout mice and characterized the role of UHRF2 in vivo. Uhrf2 knockout mice are viable, but the adult mice develop frequent spontaneous seizures and display abnormal electrical activities in brain. Despite no global DNA methylation changes, 5mC levels are decreased at certain genomic loci in the brains of Uhrf2 knockout mice. Therefore, our study has revealed a unique role of UHRF2 in the maintenance of local 5mC levels in brain that is distinct from that of its paralog UHRF1.  相似文献   

18.
Aberrant DNA methylation is often associated with cancer and the formation of tumors; however, the underlying mechanisms, in particular the recruitment and regulation of DNA methyltransferases remain largely unknown. In this study, we identified USP7 as an interaction partner of Dnmt1 and UHRF1 in vivo. Dnmt1 and USP7 formed a soluble dimer complex that associated with UHRF1 as a trimeric complex on chromatin. Complex interactions were mediated by the C-terminal domain of USP7 with the TS-domain of Dnmt1, whereas the TRAF-domain of USP7 bound to the SRA-domain of UHRF1. USP7 was capable of targeting UHRF1 for deubiquitination and affects UHRF1 protein stability in vivo. Furthermore, Dnmt1, UHRF1 and USP7 co-localized on silenced, methylated genes in vivo. Strikingly, when analyzing the impact of UHRF1 and USP7 on Dnmt1-dependent DNA methylation, we found that USP7 stimulated both the maintenance and de novo DNA methylation activity of Dnmt1 in vitro. Therefore, we propose a dual role of USP7, regulating the protein turnover of UHRF1 and stimulating the enzymatic activity of Dnmt1 in vitro and in vivo.  相似文献   

19.
We have determined the DNA renaturation kinetics for those DNA sequences of the Chinese hamster ovary (CHO-K1) cells in which enzymatic cytosine methylation occurred immediately after strand synthesis and for those in which methylation was delayed after strand synthesis. DNA sequences showing immediate or delayed methylation were found to be distributed throughout all repetition classes of the DNA of these cells, with a slight concentration of immediate methylation in moderately repetitive sequences and with delayed methylation being slightly over-represented in the highly repetitive fraction. However, DNA sequences showing both classes of methylation were represented equally in unique DNA sequences. We interpret these data to mean that the methylase acting near the replication forks (the ‘immediate’ methylase) is a relatively inefficient enzyme, missing some 20% of hemimethylated sites produced by DNA replication in these cells. We suggest that the methylase performing maintenance methylation at sites remote from the replication forks (the ‘delayed’ methylase) is simply a back-up enzyme for the first and that it has no true sequence specificity. The implications of this for the function(s) of DNA methylation in mammalian cells are discussed.  相似文献   

20.
Tat-interactive protein, 60 kDa (Tip60) is a histone acetyltransferase with specificity toward lysine 5 of histone H2A (H2AK5) and plays multiple roles in chromatin remodeling processes. Co-immunoprecipitation experiments performed on Jurkat cells, showed that Tip60 is present in the same macro-molecular complex as UHRF1 (Ubiquitin-like containing PHD and RING domain 1), DNMT1 (DNA methyltransferase 1), and HDAC1 (histone deacetylase 1). Furthermore, immunocytochemistry experiments confirmed that Tip60 co-localizes with the UHRF1/DNMT1 complex. Although down-regulation of UHRF1 by RNA interference enhanced Tip60 expression, a significant decrease of the level of acetylated H2AK5 was observed. Consistently, we have observed that down-regulation of Tip60 and DNMT1 by RNA interference, dramatically reduced the levels of acetylated H2AK5. Altogether, these results suggest that Tip60 is a novel partner of the epigenetic integration platform interplayed by UHRF1, DNMT1 and HDAC1 involved in the epigenetic code replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号