首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 μm. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.  相似文献   

2.
3.
4.
5.

Background

IL-24 (melanoma differentiation-associated gene-7 (mda-7)), a member of the IL-10 cytokine family, possesses the properties of a classical cytokine as well as tumor suppressor effects. The exact role of IL-24 in the immune system has not been defined but studies have indicated a role for IL-24 in inflammatory conditions such as psoriasis. The tumor suppressor effects of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis. Current knowledge on the regulation of IL-24 expression is sparse. Previous studies have suggested that mRNA stabilization is of major importance to IL-24 expression. Yet, the mechanisms responsible for the regulation of IL-24 mRNA stability remain unidentified. As p38 MAPK is known to regulate gene expression by interfering with mRNA degradation we examined the role of p38 MAPK in the regulation of IL-24 gene expression in cultured normal human keratinocytes.

Methodology/Principal Findings

In the present study we show that anisomycin- and IL-1β- induced IL-24 expression is strongly dependent on p38 MAPK activation. Studies of IL-24 mRNA stability in anisomycin-treated keratinocytes reveal that the p38 MAPK inhibitor SB 202190 accelerates IL-24 mRNA decay suggesting p38 MAPK to regulate IL-24 expression by mRNA-stabilizing mechanisms. The insertion of the 3′ untranslated region (UTR) of IL-24 mRNA in a tet-off reporter construct induces degradation of the reporter mRNA. The observed mRNA degradation is markedly reduced when a constitutively active mutant of MAPK kinase 6 (MKK6), which selectively activates p38 MAPK, is co-expressed.

Conclusions/Significance

Taken together, we here report p38 MAPK as a regulator of IL-24 expression and determine interference with destabilization mediated by the 3′ UTR of IL-24 mRNA as mode of action. As discussed in the present work these findings have important implications for our understanding of IL-24 as a tumor suppressor protein as well as an immune modulating cytokine.  相似文献   

6.
7.
8.
Small noncoding HIV-1 leader exon 3 is defined by its splice sites A2 and D3. While 3′ splice site (3′ss) A2 needs to be activated for vpr mRNA formation, the location of the vpr start codon within downstream intron 3 requires silencing of splicing at 5′ss D3. Here we show that the inclusion of both HIV-1 exon 3 and vpr mRNA processing is promoted by an exonic splicing enhancer (ESEvpr) localized between exonic splicing silencer ESSV and 5′ss D3. The ESEvpr sequence was found to be bound by members of the Transformer 2 (Tra2) protein family. Coexpression of these proteins in provirus-transfected cells led to an increase in the levels of exon 3 inclusion, confirming that they act through ESEvpr. Further analyses revealed that ESEvpr supports the binding of U1 snRNA at 5′ss D3, allowing bridging interactions across the upstream exon with 3′ss A2. In line with this, an increase or decrease in the complementarity of 5′ss D3 to the 5′ end of U1 snRNA was accompanied by a higher or lower vpr expression level. Activation of 3′ss A2 through the proposed bridging interactions, however, was not dependent on the splicing competence of 5′ss D3 because rendering it splicing defective but still competent for efficient U1 snRNA binding maintained the enhancing function of D3. Therefore, we propose that splicing at 3′ss A2 occurs temporally between the binding of U1 snRNA and splicing at D3.  相似文献   

9.
10.
11.
The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5′-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5′-UTRs, the psbN 5′-UTR has two processing sites, at ?39 and ?24 upstream from the initiation site. Processing at ?39 enhanced the translation rate fivefold. In contrast, processing at ?24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5′-UTR has no Shine–Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5′-UTR or with deleted psbN 5′-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5′-UTR. Mobility shift assays using 10 other chloroplast 5′-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.  相似文献   

12.
Requiem (REQ/DPF2) was originally identified as an apoptosis-inducing protein in mouse myeloid cells and belongs to the novel Krüppel-type zinc finger d4-protein family of proteins, which includes neuro-d4 (DPF1) and cer-d4 (DPF3). Interestingly, when a portion of the REQ messenger ribonucleic acid (mRNA) 3′ untranslated region (3′UTR), referred to as G8, was overexpressed in K562 cells, β-globin expression was induced, suggesting that the 3′UTR of REQ mRNA plays a physiological role. Here, we present evidence that the REQ mRNA 3′UTR, along with its trans-acting factor, Staufen1 (STAU1), is able to reduce the level of REQ mRNA via STAU1-mediated mRNA decay (SMD). By screening a complementary deoxyribonucleic acid (cDNA) expression library with an RNA–ligand binding assay, we identified STAU1 as an interactor of the REQ mRNA 3′UTR. Specifically, we provide evidence that STAU1 binds to putative 30-nucleotide stem–loop-structured RNA sequences within the G8 region, which we term the protein binding site core; this binding triggers the degradation of REQ mRNA and thus regulates translation. Furthermore, we demonstrate that siRNA-mediated silencing of either STAU1 or UPF1 increases the abundance of cellular REQ mRNA and, consequently, the REQ protein, indicating that REQ mRNA is a target of SMD.  相似文献   

13.
A method is presented that facilitates the identification of cDNA clones corresponding to the polyadenylated 3′ end of mRNA. It is based on the use of a poly dT probe that is synthesized by homopolymer extension of commercially available oligo dT. The method is shown to work in Southern blot analysis of plasmid preparations and in situ with colonies.  相似文献   

14.
15.
Leaky ribosomal scanning allows the expression of multiple proteins from a single mRNA by occasionally skipping the first start codon, and initiating translation at a subsequent one. A3- and A1-crystallin, two members of the -crystallin family of vertebrate eye lens proteins, are produced via this mechanism, of which, until now, only very few examples have been found in eukaryotic genes. Since the two start codons on the A3/A1 messenger lie in the same reading frame, the two translated proteins are identical, except for the 17 residues shorter N-terminal extension of A1-crystallin. It has been suggested that the very short leader (5–7 nucleotides) of the A3/A1 messenger might cause slippage at the first start codon, although the unfavorable context of this start codon might also be responsible. Using transient transfections, we now demonstrate that increasing the length of the leader sequence to 67 nucleotides indeed completely abolishes translation initiation at the second start codon, and thus expression of the A1-crystallin protein. Messengers having a leader of 5, 7 or 14 nucleotides all express both A3- and A1-crystallin at very similar relative levels.  相似文献   

16.
In this study, proteins specifically interacting with the 3′ untranslated region (UTR) of mRNA of the multifunctional Y-box-binding protein 1 (YB-1) were identified. One of these, hnRNP Q, was shown to specifically interact with the regulatory element (RE) in YB-1 mRNA 3′ UTR and to inhibit translation of this mRNA. Its binding to the RE was accompanied by displacement from this element of the poly(A)-binding protein (PABP), a positive regulator of YB-1 mRNA translation, and by enhanced binding of the negative YB-1 mRNA translation regulator — YB-1 itself.  相似文献   

17.
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30–40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α3β3γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ϵ inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ϵ inhibition.  相似文献   

18.
19.
(1) Phase II enzyme inducer is a kind of compound which can promote the expression of antioxidative enzymes through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Recently, it has been reported that these compounds show neuroprotective effect via combating oxidative stress. The purpose of this study is to determine whether phase II enzyme inducers have neuroprotective effects on traumatic spinal cord injury. (2) An organotypic spinal cord culture system was used, Phase II enzyme inducers were added to culture medium for 1 week, motor neurons were counted by SMI-32 staining, glutamate, Nrf2, and Heme oxygenase-1(HO-1) mRNA were tested. (3) This study showed motor neuron loss within 1 week in culture. After 1 week in culture, the system was stable. Moreover, Glutamate was increased when in culture 48 h and decreased after 1 week in culture. There was no significant change between 1 and 4 weeks in culture. Necrotic motor neuron and damaged mitochondrial were observed in culture 48 h. Furthermore, phase II enzyme inducers: tert-butyhydroquinone (t-BHQ), 3H-1,2-dithiole-3-thione (D3T), and 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) were shown to promote motor neuron survival after dissection, it was due to increasing Nrf2 and HO-1 mRNA expression and protecting mitochondrial not due to decreasing glutamate level. (4) The loss of motor neuron due to dissection can mimic severe traumatic spinal cord injury. These results demonstrate that glutamate excitotoxicity and the damage of mitochondrial is possibly involve in motor neuron death after traumatic spinal cord injury and phase II enzyme inducers show neuroprotective potential on motor neuron survival in traumatic spinal cord injury in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号