首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian AMP-activated protein kinase (AMPK) acts as a metabolite-sensing protein kinase in multiple tissues. Recent studies have shown that AMPK activation also regulates intracellular signaling pathways involved in cellular survival and apoptosis. Previously, we have reported that AMPK activation alleviates the endoplasmic reticulum (ER) stress-mediated neurotoxicity and tau hyperphosphorylation caused by palmitate. Therefore, we investigated whether AMPK activation alleviates ER stress-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells incubated with homocysteine. Regulation of AMPK activity by isoflavone was also determined to investigate the underlying mechanism of its neuroprotective effect. Treatment of SH-SY5Y human neuroblastoma cells with N 1-(β-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR), a pharmacological activator of AMPK, significantly protected cells against cytotoxicity imposed by tunicamycin and homocysteine. Homocysteine significantly suppressed AMPK activation, which was alleviated by AICAR. We observed a significant inhibition of the unfolded protein response by AICAR in cells incubated with homocysteine, suggesting a protective role of AMPK activation against ER stress-mediated neurotoxicity. AICAR also significantly reduced tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and c-Jun N-terminal kinase in cells incubated with homocysteine. Furthermore, treatment of cells with soy isoflavone, genistein and daidzein significantly activated AMPK, which was repressed by tunicamycin and homocysteine. Therefore, our results suggest that AMPK activation by isoflavone as well as AICAR alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells.  相似文献   

2.
Xiang  Biao  Li  Daowen  Chen  Yiqiang  Li  Meng  Zhang  Yuan  Sun  Tun  Tang  Shusheng 《Neurochemical research》2021,46(2):367-378
Neurochemical Research - Impaired homeostasis of copper has been linked to different pathophysiological mechanisms in neurodegenerative diseases and oxidative injury has been proposed as the main...  相似文献   

3.
4.
Bupivacaine is a sodium channel blocker, which is widely used for local infiltration nerve block, epidural and intrathecal anesthesia. However, bupivacaine could cause nerve damage. Hispidulin was shown to be able to penetrate the blood–brain barrier and possess antiepileptic activity. In this study, we investigate whether hispidulin administration could attenuate bupivacaine-induced neurotoxicity. Bupivacaine-challenged mouse neuroblastoma N2a cells were treated with hispidulin. The neuron injury was assessed by examination of cell viability and apoptosis. The levels of activation of AMP-activated protein kinase (AMPK) signaling pathway were examined along with the effect of blocking AMPK signaling on cell viability in the presence of hispidulin and bupivacaine. Our results showed that Bupivacaine treatment significantly decreased cell viability and induced apoptosis. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment increased the levels of phospho-AMPK and phospho-GSK3β and attenuated bupivacaine-induced loss in mitochondrial membrane potential. Furthermore, we found that blocking AMPK signaling pathway significantly abolished the cytoprotective effect of hispidulin against bupivacaine-induced cell injury. Our findings suggest that treatment of neuroblastoma cells with hispidulin-protected neural cells from Bupivacaine-induced injury via the activation of the AMPK/GSK3β signaling pathway.  相似文献   

5.
6.
人神经母细胞瘤细胞SH-SY5Y细胞可以表达神经元特异性的酪氨酸羟化酶、多巴胺-β-羟化酶以及多巴胺转运体等,因此可用于建立帕金森病的体外模型。虽然帕金森综合症发病的确切机制至今尚不清楚,但众多的病理学资料证实该病患者存在中脑黑质多巴胺能神经元的凋亡。自由基、兴奋性  相似文献   

7.
The activation of protein kinase C was investigated in digitonin-permeabilized human neuroblastoma SH-SY5Y cells by measuring the phosphorylation of the specific protein kinase C substrate myelin basic protein4-14. The phosphorylation was inhibited by the protein kinase C inhibitory peptide PKC19-36 and was associated to a translocation of the enzyme to the membrane fractions of the SH-SY5Y cells. 1,2-Dioctanoyl-sn-glycerol had no effect on protein kinase C activity unless the calcium concentration was raised to concentrations found in stimulated cells (above 100 nM). Calcium in the absence of other activators did not stimulate protein kinase C. Phorbol 12-myristate 13-acetate was not dependent on calcium for the activation or the translocation of protein kinase C. The induced activation was sustained for 10 min, and thereafter only a small net phosphorylation of the substrate could be detected. Calcium or dioctanoylglycerol, when applied alone, only caused a minor translocation, whereas in combination a marked translocation was observed. Arachidonic acid (10 microM) enhanced protein kinase C activity in the presence of submaximal concentrations of calcium and dioctanoylglycerol. Quinacrine and p-bromophenacyl bromide did not inhibit calcium- and dioctanoylglycerol-induced protein kinase C activity at concentrations which are considered to be sufficient for phospholipase A2 inhibition.  相似文献   

8.
Progressive accumulation of beta-amyloid (Aβ) will form the senile plaques and cause oxidative damage and neuronal cell death, which was accepted as the major pathological mechanism to the Alzheimer’s disease (AD). Hence, inhibition of Aβ-induced oxidative damage and neuronal cell apoptosis by agents with potential antioxidant properties represents one of the most effective strategies in combating human AD. Curcumin (Cur) a natural extraction from curcuma longa has potential of pharmacological efficacy, including the benefit to antagonize Aβ-induced neurotoxicity. However, the molecular mechanism remains elusive. The present study evaluated the protective effect of Cur against Aβ-induced cytotoxicity and apoptosis in PC12 cells and investigated the underlying mechanism. The results showed that Cur markedly reduced Aβ-induced cytotoxicity by inhibition of mitochondria-mediated apoptosis through regulation of Bcl-2 family. The PARP cleavage, caspases activation, and ROS-mediated DNA damage induced by Aβ were all significantly blocked by Cur. Moreover, regulation of p38 MAPK and AKT pathways both contributed to this protective potency. Our findings suggested that Cur could effectively suppress Aβ-induced cytotoxicity and apoptosis by inhibition of ROS-mediated oxidative damage and regulation of ERK pathway, which validated its therapeutic potential in chemoprevention and chemotherapy of Aβ-induced neurotoxicity.  相似文献   

9.
Recent researches have shown that autophagy is associated with the pathogenesis of neurodegenerative disorders, but there is no paper to investigate the effects of autophagy modulation on Parkinson’s disease depression (PDD). In addition, glycyrrhizic acid (GA), the major bioactive ingredient of Radix glycyrrhizae, can induce autophagy and ease rotenone-induced Parkinson’s disease (PD). However, there is also no paper to study the action and molecular mechanisms of GA on PDD. In this research, we built the injury model of SH-SY5Y cells through 6-hydroxydopamine (6-OHDA) and corticosterone (CORT). Then, our results showed that GA markedly increased the viability and decreased the apoptosis in SH-SY5Y cells after pre-treating with 6-OHDA and CORT. Moreover, GA notably decreased the expressions of α-Syn and p-S1292-LRRK2 proteins, and significantly increased the levels of CREB and BDNF proteins. Previous papers have suggested that CORT contributed to dopaminergic neurodegeneration via the glucocorticoid (GC)/glucocorticoid receptor (GR) interaction, and our results showed that GA reduced GC level and hypothalamic–pituitary–adrenal (HPA) activity in SH-SY5Y cells by regulating GR signaling pathway. Furthermore, mechanism investigations also showed that GA had the ability to up-regulate the conversion of LC3B II/I and the expression of Beclin-1, and induce autophagy in SH-SY5Y cells, which were reversed by the autophagy inhibitor 3-methyladenine (3-MA). Collectively, these findings proved that GA exerted efficient activity against neurotoxicity in SH-SY5Y cells induced by 6-OHDA and CORT via activation of autophagy, which should be developed as an efficient candidate for treating PDD in the future.  相似文献   

10.
11.
Neurochemical Research - 6-Hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS) that are associated with various neurodegenerative diseases such as...  相似文献   

12.
Lin  Heng  Tang  Ri  Fan  Lijun  Wang  Ersong 《Neurochemical research》2022,47(10):3192-3201

Parkinson’s disease (PD) is a common neurodegenerative disease. Previously we identified tetranectin (TN) as a differentially expressed protein in the cerebrospinal fluid of PD patients, and we were surprised to find that TN knockout mice developed PD features. However, the specific role of TN in PD has not been clarified. In this study, we aimed to determine the effect of exogenous TN on cellular PD models and elucidate the underlying mechanisms. We found that exogenous TN could alleviate pre-formed-fibrils (PFFs)-induced synucleinopathies in SH-SY5Y cells and reduce the cell-to-cell transmission of α-synuclein (SYN). We also found that TN can promote the degradation of SYN by plasmin, which may account for its effect on cellular PD models. Moreover, administration of SYN/PFFs decreased the expression of TN and increased the expression of plasminogen activator inhibitor-1 (PAI-1) in SH-SY5Y cells, thereby reducing plasmin activity. Our findings depict a possible SYN-TN-plasmin interaction in which elevated levels of extracellular SYN monomers and aggregates in PD diminish the production of TN and PAI-1. Such changes lead to a reduced plasmin activity, which in turn reduces the degradation of extracellular SYN, thus forming a vicious cycle.

  相似文献   

13.
14.
15.
阿尔茨海默病(Alzheimer’s disease,AD)是一种国际公认的难治性神经退行性疾病,是引起痴呆的最常见的病因.其主要的病理学变化是由Aβ过度沉积引起的老年斑(SP),以及Tau蛋白过度磷酸化引起的神经纤维缠结(NFTs).从人脐带华通胶中分离出的间充质干细胞(hUC-MSCs)由于其强大的旁分泌作用,已经被证实对神经系统疾病有治疗效果,其中包括AD,这种治疗机制尚不明确.本研究用冈田酸对SH-SY5Y细胞系进行损伤,建立AD体外模型,然后用种有hUC-MSCs的transwell小室或其条件培养基对模型进行治疗,并发现其分泌的IL-6可能是介导这种修复作用的关键因子.  相似文献   

16.
Khodadadi  H.  Jahromi  G. P.  Zaeinalifard  G.  Fasihi-Ramandi  M.  Esmaeili  M.  Shahriary  A. 《Neurophysiology》2020,52(2):124-133
Neurophysiology - Parkinson’s disease (PD) is a widespread neurological disorder mainly characterized by gradual death of dopaminergic neurons in the basal ganglia. In our study, we compared...  相似文献   

17.
The mechanism of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in cancer cells is not fully understood. Here, we show that the Akt survival pathway plays an important role in TRAIL resistance in human cancer cells. Specifically, we found that TRAIL treatment activates the Akt survival pathway and that inhibition of this pathway by the PI3K inhibitor LY294002 or knockdown of Akt sensitizes resistant cancer cells to TRAIL. Since Akt is negatively regulated by the tumor suppressor PTEN, we examined the TRAIL sensitivity in PTEN knockdown mouse prostate epithelial cells and found that PTEN−/− cells are more resistant than PTEN+/+ cells while the sensitivity of PTEN+/− cells fell in between. Further, we showed that overexpression of a mutant PTEN confers TRAIL resistance in PTEN+/+ cells, supporting a role of PTEN in TRAIL sensitivity. In TRAIL resistant breast T47D cells, overexpression of the mutant PTEN further increased their resistance to TRAIL. Taken together, our data indicate that inactivation of functional PTEN and the consequent activation of the Akt pathway prevents TRAIL-induced apoptosis, leading to TRAIL resistance. Therefore, our results suggest that TRAIL resistance can be overcome by targeting PTEN or the Akt survival pathway in cancer cells.  相似文献   

18.
Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H2O2) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H2O2 concentration. However, one and 15 days after SNT, H2O2 concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号