首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Besides linear RNAs, pre-mRNA splicing generates three forms of RNAs: lariat introns, Y-structure introns from trans-splicing, and circular exons through exon skipping. To study the persistence of excised introns in total cellular RNA, we used three Escherichia coli 3′ to 5′ exoribonucleases. Ribonuclease R (RNase R) thoroughly degrades the abundant linear RNAs and the Y-structure RNA, while preserving the loop portion of a lariat RNA. Ribonuclease II (RNase II) and polynucleotide phosphorylase (PNPase) also preserve the lariat loop, but are less efficient in degrading linear RNAs. RNase R digestion of the total RNA from human skeletal muscle generates an RNA pool consisting of lariat and circular RNAs. RT–PCR across the branch sites confirmed lariat RNAs and circular RNAs in the pool generated by constitutive and alternative splicing of the dystrophin pre-mRNA. Our results indicate that RNase R treatment can be used to construct an intronic cDNA library, in which majority of the intron lariats are represented. The highly specific activity of RNase R implies its ability to screen for rare intragenic trans-splicing in any target gene with a large background of cis-splicing. Further analysis of the intronic RNA pool from a specific tissue or cell will provide insights into the global profile of alternative splicing.  相似文献   

2.
3.
Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3′ splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria.  相似文献   

4.
Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression.  相似文献   

5.
6.
Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3′ exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3′ splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3–IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.  相似文献   

7.
张翼 《生命科学》2008,20(2):202-206
对非编码RNA功能的认识是后基因组时代的一个研究焦点,本文主要介绍非编码RNA在RNA剪接中的催化和调控功能。在RNA加工过程中,三大类内含子的剪接都是由RNA成员主导。其中Ⅰ型和Ⅱ型内含子能催化自身的切除和外显子连接反应;而核mRNA内含子的剪接则由剪接体里的小核RNA主导。Ⅰ型和Ⅱ型内含子存在于细菌、低等真核细胞和植物的细胞器内;而真核细胞的核编码蛋白质基因内全部是核mRNA内含子,并且其数目随生物体的复杂性而显著升高。一个多内含子前体mRNA通过选择性剪接产生多种,甚至上万种不同的mRNA和蛋白质,对蛋白质组的复杂度和时空表达调控至关重要。选择性剪接调控由剪接调控蛋白特异识别和结合前体mRNA里所富含的顺式RNA调控元件完成的;系统认识这两者之间的对应关系是揭示基因组表达调控网络的一把钥匙。  相似文献   

8.
Alternative splicing and bioinformatic analysis of human U12-type introns   总被引:1,自引:0,他引:1  
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.  相似文献   

9.
Vitamin A metabolite, all-trans-retinoic acid (RA), induces cell growth, differentiation, and apoptosis and has an emerging role in gene regulation and alternative splicing events. Protein kinase Cδ (PKCδ), a serine/threonine kinase, has a role in cell proliferation, differentiation, and apoptosis. We reported an alternatively spliced variant of human PKCδ, PKCδVIII that functions as a pro-survival protein (1). RA regulates the splicing and expression of PKCδVIII via utilization of a downstream 5′ splice site of exon 10 on PKCδ pre-mRNA. Here, we further elucidate the molecular mechanisms involved in RA regulation of alternative splicing of PKCδVIII mRNA. Overexpression and knockdown of the splicing factor SC35 (i.e. SRp30b) indicated that it is involved in PKCδVIII alternative splicing. To identify the cis-elements involved in 5′ splice site selection we cloned a minigene, which included PKCδ exon 10 and its flanking introns in the pSPL3 splicing vector. Alternative 5′ splice site utilization in the minigene was promoted by RA. Further, co-transfection of SC35 with PKCδ minigene promoted selection of 5′ splice site II. Mutation of the SC35 binding site in the PKCδ minigene abolished RA-mediated utilization of 5′ splice splice II. RNA binding assays demonstrated that the enhancer element downstream of PKCδ exon 10 is a SC35 cis-element. We conclude that SC35 is pivotal in RA-mediated PKCδ pre-mRNA alternative splicing. This study demonstrates how a nutrient, vitamin A, via its metabolite RA, regulates alternative splicing and thereby gene expression of the pro-survival protein PKCδVIII.  相似文献   

10.
11.
The expression of ribosomal protein (rp) genes is regulated at multiple levels. In yeast, two genes are autoregulated by feedback effects of the protein on pre-mRNA splicing. Here, we have investigated whether similar mechanisms occur in eukaryotes with more complicated and highly regulated splicing patterns. Comparisons of the sequences of ribosomal protein S13 gene (RPS13) among mammals and birds revealed that intron 1 is more conserved than the other introns. Transfection of HEK 293 cells with a minigene-expressing ribosomal protein S13 showed that the presence of intron 1 reduced expression by a factor of four. Ribosomal protein S13 was found to inhibit excision of intron 1 from rpS13 pre-mRNA fragment in vitro. This protein was shown to be able to specifically bind the fragment and to confer protection against ribonuclease cleavage at sequences near the 5′ and 3′ splice sites. The results suggest that overproduction of rpS13 in mammalian cells interferes with splicing of its own pre-mRNA by a feedback mechanism.  相似文献   

12.
Plant mitochondrial group II introns do not all possess hallmark ribozymic features such as the bulged adenosine involved in lariat formation. To gain insight into their splicing pathways, we have examined the physical form of excised introns in germinating wheat embryos. Using RT–PCR and cRT–PCR, we observed conventional lariats consistent with a two-step transesterification pathway for introns such as nad2 intron 4, but this was not the case for the cox2 intron or nad1 intron 2. For cox2, we detected full-length linear introns, which possess non-encoded 3′terminaladenosines, as well as heterogeneous circular introns, which lack 3′ nucleotide stretches. These observations are consistent with hydrolytic splicing followed by polyadenylation as well as an in vivo circularization pathway, respectively. The presence of both linear and circular species in vivo is supported by RNase H analysis. Furthermore, the nad1 intron 2, which lacks a bulged nucleotide at the branchpoint position, comprised a mixed population of precisely full-length molecules and circular ones which also include a short, discrete block of non-encoded nucleotides. The presence of these various linear and circular forms of excised intron molecules in plant mitochondria points to multiple novel group II splicing mechanisms in vivo.  相似文献   

13.
Alternative pre-mRNA splicing of two terminal exons (α and β) regulates the expression of the human DNA ligase III gene. In most tissues, the α exon is expressed. In testes and during spermatogenesis, the β exon is used instead. The α exon encodes the interaction domain with a scaffold DNA repair protein, XRCC1, while the β exon-encoded C-terminal does not. Sequence elements regulating the alternative splicing pattern were mapped by in vitro splicing assays in HeLa nuclear extracts. Deletion of a region beginning in the β exon and extending into the downstream intron derepressed splicing to the β exon. Two silencing elements were found within this 101 nt region: a 16 nt exonic splicing silencer immediately upstream of the β exon polyadenylation signal and a 45 nt intronic splicing silencer. The exonic splicing silencer inhibited splicing, even when the polyadenylation signal was deleted or replaced by a 5′ splice site. This element also enhanced polyadenylation under conditions unfavourable to splicing. The splicing silencer partially inhibited assembly of spliceosomal complexes and functioned in an adenoviral pre-mRNA context. Silencing of splicing by the element was associated with cross-linking of a 37 kDa protein to the RNA substrate. The element exerts opposite functions in splicing and polyadenylation.  相似文献   

14.
The yeast mitochondrial group II intron bI1 is self-splicing in vitro. We have introduced a deletion of hairpin C1 within the structural domain 1 that abolishes catalytic activity of the intron in the normal splicing reaction in cis, but does less severely affect a reaction in trans, the reopening of ligated exons. Since exon reopening is supposed to correspond to a reverse 3' cleavage this suggests that the deletion specifically blocks the first reaction step. The intron regains its activity to self-splice in cis by intermolecular complementation with a small RNA harbouring sequences lacking in the mutant intron. These results demonstrate the feasibility to reconstitute a functionally active structure of the truncated intron by intermolecular complementation in vitro. Furthermore, the data support the hypothesis that group II introns are predecessors of nuclear pre-mRNA introns and that the small nuclear RNAs of the spliceosome arose by segregation from the original intron.  相似文献   

15.
Splicing of nuclear mRNA precursors (pre-mRNAs) takes place in the spliceosome, a large and complex ribonucleoprotein. Nuclear pre-mRNA splicing and group II intron self-splicing occur by a chemically identical pathway involving recognition of a specific branchpoint adenosine and nucleophilic activation of its 2'-hydroxyl group. The chemical similarity between these two splicing reactions, as well as other considerations, have suggested that the catalytic core of the spliceosome and group II introns may be related. Here we test this hypothesis by analyzing splicing and RNA branch formation of a pre-mRNA and a group II intron in which the branchpoint adenosine was substituted with purine base analogues. We find that replacement of the branchpoint adenosine with either of two modified adenosine analogues or guanosine leads to remarkably similar patterns of splicing and RNA branch formation in the two systems.  相似文献   

16.
17.
18.
GC-AG introns represent 0.7% of total human pre-mRNA introns. To study the function of GC-AG introns in splicing regulation, 196 cDNA-confirmed GC-AG introns were identified in Caenorhabditis elegans. These represent 0.6% of the cDNA- confirmed intron data set for this organism. Eleven of these GC-AG introns are involved in alternative splicing. In a comparison of the genomic sequences of homologous genes between C.elegans and Caenorhabditis briggsae for 26 GC-AG introns, the C at the +2 position is conserved in only five of these introns. A system to experimentally test the function of GC-AG introns in alternative splicing was developed. Results from these experiments indicate that the conserved C at the +2 position of the tenth intron of the let-2 gene is essential for developmentally regulated alternative splicing. This C allows the splice donor to function as a very weak splice site that works in balance with an alternative GT splice donor. A weak GT splice donor can functionally replace the GC splice donor and allow for splicing regulation. These results indicate that while the majority of GC-AG introns appear to be constitutively spliced and have no evolutionary constraints to prevent them from being GT-AG introns, a subset of GC-AG introns is involved in alternative splicing and the C at the +2 position of these introns can have an important role in splicing regulation.  相似文献   

19.
There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号