首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450 46A1 (CYP46A1) initiates the major pathway of cholesterol elimination from the brain and thereby controls cholesterol turnover in this organ. We determined x-ray crystal structures of CYP46A1 in complex with four structurally distinct pharmaceuticals; antidepressant tranylcypromine (2.15 Å), anticonvulsant thioperamide (1.65 Å), antifungal voriconazole (2.35 Å), and antifungal clotrimazole (2.50 Å). All four drugs are nitrogen-containing compounds that have nanomolar affinity for CYP46A1 in vitro yet differ in size, shape, hydrophobicity, and type of the nitrogen ligand. Structures of the co-complexes demonstrate that each drug binds in a single orientation to the active site with tranylcypromine, thioperamide, and voriconazole coordinating the heme iron via their nitrogen atoms and clotrimazole being at a 4 Å distance from the heme iron. We show here that clotrimazole is also a substrate for CYP46A1. High affinity for CYP46A1 is determined by a set of specific interactions, some of which were further investigated by solution studies using structural analogs of the drugs and the T306A CYP46A1 mutant. Collectively, our results reveal how diverse inhibitors can be accommodated in the CYP46A1 active site and provide an explanation for the observed differences in the drug-induced spectral response. Co-complexes with tranylcypromine, thioperamide, and voriconazole represent the first structural characterization of the drug binding to a P450 enzyme.  相似文献   

2.
Cytochrome P450 46A1 (CYP46A1) is the cholesterol 24-hydroxylase initiating the major pathways of cholesterol removal from the brain, and bicalutamide (BIC) is a drug of choice for the treatment of progressive androgen-dependent prostate cancer. We evaluated the interactions of BIC with CYP46A1 by x-ray crystallography and by conducting solution and mutagenesis studies. Because BIC is administered to patients as a racemic mixture of the S and R isomers, we studied all three, racemic BIC as well as the S and R isomers. Co-crystallization of CYP46A1 with racemic BIC led to structure determinations at 2.1 Å resolution with the drug complexes exhibiting novel properties. Both BIC isomers bind to the CYP46A1 active site in very similar single orientation and adopt an energetically unfavorable folded conformation. This folded BIC conformation is correlated with drug-induced localized shifts of amino acid side chains in CYP46A1 and unusual interactions in the CYP46A1-BIC complex. One of these interactions involves a water molecule that is coordinated to the P450 heme iron and also hydrogen-bonded to the BIC nitrile. Due to polarization of the water in this environment, the heme elicits previously unreported types of P450 spectral responses. We also observed that access to the P450 active site was affected by differential recognition of S versus R isomers at the CYP46A1 surface arising from BIC conformational polymorphism.  相似文献   

3.
The presence of the blood-brain barrier (BBB) is critical for cholesterol metabolism in the brain, preventing uptake of lipoprotein-bound cholesterol from the circulation. The metabolic consequences of a leaking BBB for cholesterol metabolism have not been studied previously. Here we used a pericyte-deficient mouse model, Pdgfbret/ret, shown to have increased permeability of the BBB to a range of low-molecular mass and high-molecular mass tracers. There was a significant accumulation of plant sterols in the brains of the Pdgfbret/ret mice. By dietary treatment with 0.3% deuterium-labeled cholesterol, we could demonstrate a significant flux of cholesterol from the circulation into the brains of the mutant mice roughly corresponding to about half of the measured turnover of cholesterol in the brain. We expected the cholesterol flux into the brain to cause a down-regulation of cholesterol synthesis. Instead, cholesterol synthesis was increased by about 60%. The levels of 24(S)-hydroxycholesterol (24S-OHC) were significantly reduced in the brains of the pericyte-deficient mice but increased in the circulation. After treatment with 1% cholesterol in diet, the difference in cholesterol synthesis between mutants and controls disappeared. The findings are consistent with increased leakage of 24S-OHC from the brain into the circulation in the pericyte-deficient mice. This oxysterol is an efficient suppressor of cholesterol synthesis, and the results are consistent with a regulatory role of 24S-OHC in the brain. To our knowledge, this is the first demonstration that a defective BBB may lead to increased flux of a lipophilic compound out from the brain. The relevance of the findings for the human situation is discussed.  相似文献   

4.
Sterol 12α-hydroxylase (CYP8B1) is required for cholic acid synthesis and plays a critical role in intestinal cholesterol absorption and pathogenesis of cholesterol gallstone, dyslipidemia, and diabetes. In this study we investigated the underlying mechanism of fasting induction and circadian rhythm of CYP8B1 by a cholesterol-activated nuclear receptor and core clock gene retinoic acid-related orphan receptor α (RORα). Fasting stimulated, whereas restricted-feeding reduced expression of CYP8B1 mRNA and protein. However, fasting and feeding had little effect on the diurnal rhythm of RORα mRNA expression, but fasting increased RORα protein levels by cAMP-activated protein kinase A-mediated phosphorylation and stabilization of the protein. Adenovirus-mediated gene transduction of RORα to mice strongly induced CYP8B1 expression, and increased liver cholesterol and 12α-hydroxylated bile acids in the bile acid pool and serum. A reporter assay identified a functional RORα response element in the CYP8B1 promoter. RORα recruited cAMP response element-binding protein-binding protein (CBP) to stimulate histone acetylation on the CYP8B1 gene promoter. In conclusion, RORα is a key regulator of diurnal rhythm and fasting induction of CYP8B1, which regulates bile acid composition and serum and liver cholesterol levels. Antagonizing RORα activity may be a therapeutic strategy for treating inflammatory diseases such as non-alcoholic fatty liver disease and type 2 diabetes.  相似文献   

5.
Cholesterol 24S-hydroxylase (CYP46A1) converts cholesterol into 24S-hydroxycholesterol in neurons and participates in cholesterol homeostasis in the central nervous system, including the retina. We aimed to evaluate the consequences of CYP46A1 inhibition by voriconazole on cholesterol homeostasis and function in the retina. Rats received daily intraperitoneal injections of voriconazole (60 mg/kg), minocycline (22 mg/kg), voriconazole plus minocycline, or vehicle during five consecutive days. The rats were submitted to electroretinography to monitor retinal functionality. Cholesterol and 24S-hydroxycholesterol were measured in plasma, brain and retina by gas chromatography-mass spectrometry. The expression of CYP46A1, and GFAP as a marker for glial activation was analyzed in the retina and brain. Cytokines and chemokines were measured in plasma, vitreous, retina and brain. Voriconazole significantly impaired the functioning of the retina as exemplified by the reduced amplitude and increased latency of the b-wave of the electroretinogram, and altered oscillary potentials. Voriconazole decreased 24S-hydroxycholesterol levels in the retina. Unexpectedly, CYP46A1 and GFAP expression was increased in the retina of voriconazole-treated rats. ICAM-1 and MCP-1 showed significant increases in the retina and vitreous body. Minocycline did not reverse the effects of voriconazole. Our data highlighted the cross talk between retinal ganglion cells and glial cells in the retina, suggesting that reduced 24S-hydroxycholesterol concentration in the retina may be detected by glial cells, which were consequently activated.  相似文献   

6.
The mechanistic basis for the tissue specific expression of cholesterol elimination pathways is poorly understood. To gain additional insight into this phenomenon we considered it of interest to investigate if epigenetic mechanisms are involved in the regulation of the brain-specific enzyme cholesterol 24-hydroxylase (CYP46A1), a key regulator of brain cholesterol elimination. We demonstrated a marked time-dependent derepression of the expression of CYP46A1, in response to treatment with the potent histone deacetylase (HDAC) inhibitor Trichostatin A. The pattern of expression of the genes in the genomic region surrounding CYP46A1 was found to be diametrically opposite in brain and liver. Intraperitoneal injection of HDAC inhibitors in mice led to a significant derepression of hepatic Cyp46a1 mRNA expression and tissue specific changes in Hmgcr and Cyp39a1 mRNA expression. These results are discussed in the context of the phenomenology of tissue specific cholesterol balance.  相似文献   

7.
One challenge to the development of new antitubercular drugs is the existence of multiple virulent strains that differ genetically. We and others have recently demonstrated that CYP125A1 is a steroid C26-monooxygenase that plays a key role in cholesterol catabolism in Mycobacterium tuberculosis CDC1551 but, unexpectedly, not in the M. tuberculosis H37Rv strain. This discrepancy suggests that the H37Rv strain possesses compensatory activities. Here, we examined the roles in cholesterol metabolism of two other cytochrome P450 enzymes, CYP124A1 and CYP142A1. In vitro analysis, including comparisons of the binding affinities and catalytic efficiencies, demonstrated that CYP142A1, but not CYP124A1, can support the growth of H37Rv cells on cholesterol in the absence of cyp125A1. All three enzymes can oxidize the sterol side chain to the carboxylic acid state by sequential oxidation to the alcohol, aldehyde, and acid. Interestingly, CYP125A1 generates oxidized sterols of the (25S)-26-hydroxy configuration, whereas the opposite 25R stereochemistry is obtained with CYP124A1 and CYP142A1. Western blot analysis indicated that CYP124A1 was not detectably expressed in either the H37Rv or CDC1551 strains, whereas CYP142A1 was found in H37Rv but not CDC1551. Genetic complementation of CDC1551 Δcyp125A1 cells with the cyp124A1 or cyp142A1 genes revealed that the latter can fully rescue the growth defect on cholesterol, whereas cells overexpressing CYP124A1 grow poorly and accumulate cholest-4-en-3-one. Our data clearly establish a functional redundancy in the essential C26-monooxygenase activity of M. tuberculosis and validate CYP125A1 and CYP142A1 as possible drug targets.  相似文献   

8.
Cholesterol 24-hydroxylase, also known as CYP46A1 (EC 1.14.13.98), is a monooxygenase and a member of the cytochrome P450 family. CYP46A1 is specifically expressed in the brain where it controls cholesterol elimination by producing 24S-hydroxylcholesterol (24-HC) as the major metabolite. Modulation of CYP46A1 activity may affect Aβ deposition and p-tau accumulation by changing 24-HC formation, which thereafter serves as potential therapeutic pathway for Alzheimer’s disease. In this work, we showcase the efficient synthesis and preliminary pharmacokinetic evaluation of a novel cholesterol 24-hydroxylase inhibitor 1 for use in positron emission tomography.  相似文献   

9.
Two diets simulating the recommendations of the American Heart Association to increase the intake of n-3 polyunsaturated fatty acids (n-3 PUFAs) were tested on Golden Syrian hamsters and compared to the diet simulating the current estimated consumption of fat in the United States. N-3 PUFAs were evaluated for their effects on serum and brain lipids and on the three cytochrome P450 enzymes (CYPs 7A1, 27A1, and 46A1) that play key roles in cholesterol elimination from different organs. Hamsters on the highest concentration of n-3 PUFAs had a statistically significant decrease in LDL and HDL cholesterol and no change in serum total cholesterol and triglycerides levels. CYP27A1 and CYP46A1 mRNA levels were increased in the liver and brain, respectively, whereas possible effects on CYP7A1 were obscured by a marked intergroup variability at mRNA, protein, and sterol product levels. Increased levels of CYP46A1 mRNA in the brain did not lead to significant changes in the levels of lathosterol, 24S-hydroxycholesterol or cholesterol in this organ. The data obtained are discussed in relation to inconsistent effects of n-3 PUFAs on serum lipids in human trials and reported positive effects of fish oil on cognitive function.  相似文献   

10.
The protein kinase C (PKC) family of Ca(2+) and/or lipid-activated serine-threonine protein kinases is implicated in the pathogenesis of obesity and insulin resistance. We recently reported that protein kinase Cβ (PKCβ), a calcium-, diacylglycerol-, and phospholipid-dependent kinase, is critical for maintaining whole body triglyceride homeostasis. We now report that PKCβ deficiency has profound effects on murine hepatic cholesterol metabolism, including hypersensitivity to diet-induced gallstone formation. The incidence of gallstones increased from 9% in control mice to 95% in PKCβ(-/-) mice. Gallstone formation in the mutant mice was accompanied by hyposecretion of bile acids with no alteration in fecal bile acid excretion, increased biliary cholesterol saturation and hydrophobicity indices, as well as hepatic p42/44(MAPK) activation, all of which enhance susceptibility to gallstone formation. Lithogenic diet-fed PKCβ(-/-) mice also displayed decreased expression of hepatic cholesterol-7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8b1). Finally, feeding a modified lithogenic diet supplemented with milk fat, instead of cocoa butter, both increased the severity of and shortened the interval for gallstone formation in PKCβ(-/-) mice and was associated with dramatic increases in cholesterol saturation and hydrophobicity indices. Taken together, the findings reveal a hitherto unrecognized role of PKCβ in fine tuning diet-induced cholesterol and bile acid homeostasis, thus identifying PKCβ as a major physiological regulator of both triglyceride and cholesterol homeostasis.  相似文献   

11.
Most cholesterol turnover takes place in the liver and involves the conversion of cholesterol into soluble and readily excreted bile acids. The synthesis of bile acids is limited to the liver, but several enzymes in the bile acid biosynthetic pathway are expressed in extra-hepatic tissues and there also may contribute to cholesterol turnover. An example of the latter type of enzyme is cholesterol 24-hydroxylase, a cytochrome P450 (CYP46A1) that is expressed at 100-fold higher levels in the brain than in the liver. Cholesterol 24-hydroxylase catalyzes the synthesis of the oxysterol 24(S)-hydroxycholesterol. To assess the relative contribution of the 24-hydroxylation pathway to cholesterol turnover, we performed balance studies in mice lacking the cholesterol 24-hydroxylase gene (Cyp46a1-/- mice). Parameters of hepatic cholesterol and bile acid metabolism in the mutant mice remained unchanged relative to wild type controls. In contrast to the liver, the synthesis of new cholesterol was reduced by approximately 40% in the brain, despite steady-state levels of cholesterol being similar in the knockout mice. These data suggest that the synthesis of new cholesterol and the secretion of 24(S)-hydroxycholesterol are closely coupled and that at least 40% of cholesterol turnover in the brain is dependent on the action of cholesterol 24-hydroxylase. We conclude that cholesterol 24-hydroxylase constitutes a major tissue-specific pathway for cholesterol turnover in the brain.  相似文献   

12.
We previously described a heterozygous mouse model overexpressing human HA-tagged 24S-hydroxylase (CYP46A1) utilizing a ubiquitous expression vector. In this study, we generated homozygotes of these mice with circulating levels of 24OH 30–60% higher than the heterozygotes. Female homozygous CYP46A1 transgenic mice, aged 15 months, showed an improvement in spatial memory in the Morris water maze test as compared to the wild type mice. The levels of N-Methyl-D-Aspartate receptor 1, phosphorylated-N-Methyl-D-Aspartate receptor 2A, postsynaptic density 95, synapsin-1 and synapthophysin were significantly increased in the hippocampus of the CYP46A1 transgenic mice as compared to the controls. The levels of lanosterol in the brain of the CYP46A1 transgenic mice were significantly increased, consistent with a higher synthesis of cholesterol. Our results are discussed in relation to the hypothesis that the flux in the mevalonate pathway in the brain is of importance in cognitive functions.  相似文献   

13.
Disturbances in cholesterol metabolism have been associated with hypertension and neurodegenerative disorders. Because cholesterol metabolism in the brain is efficiently separated from plasma cholesterol by the blood-brain barrier (BBB), it is an unsolved paradox how high blood cholesterol can cause an effect in the brain. Here, we discuss the possibility that cholesterol metabolites permeable to the BBB might account for these effects. We show that 27-hydroxycholesterol (27-OH) and 24S-hydroxycholesterol (24S-OH) up-regulate the renin-angiotensin system (RAS) in the brain. Brains of mice on a cholesterol-enriched diet showed up-regulated angiotensin converting enzyme (ACE), angiotensinogen (AGT), and increased JAK/STAT activity. These effects were confirmed in in vitro studies with primary neurons and astrocytes exposed to 27-OH or 24S-OH, and were partially mediated by liver X receptors. In contrast, brain RAS activity was decreased in Cyp27a1-deficient mice, a model exhibiting reduced 27-OH production from cholesterol. Moreover, in humans, normocholesterolemic patients with elevated 27-OH levels, due to a CYP7B1 mutation, had markers of activated RAS in their cerebrospinal fluid. Our results demonstrate that side chain-oxidized oxysterols are modulators of brain RAS. Considering that levels of cholesterol and 27-OH correlate in the circulation and 27-OH can pass the BBB into the brain, we suggest that this cholesterol metabolite could be a link between high plasma cholesterol levels, hypertension, and neurodegeneration.  相似文献   

14.
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.  相似文献   

15.
Cholesterol 24S-hydroxylase (CYP46A1) is of key importance for cholesterol homeostasis in the brain. This enzyme seems to be resistant toward most regulatory factors and at present no drug effects on its activity have been described. The crystal structures of the substrate-free and substrate-bound CYP46A1 were recently determined (Mast et al., Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc. Natl. Acad. Sci. USA. 2008. 105: 9546–9551). These structural studies suggested that ligands other than sterols can bind to CYP46A1. We show here that the antifungal drug voriconazole binds to the enzyme in vitro and inhibits CYP46A1-mediated cholesterol 24-hydroxylation with a Ki of 11 nM. Mice treated with daily intraperitoneal injections of voriconazole for 5 days had high levels of voriconazole in the brain and significantly reduced brain levels of 24S-hydroxycholesterol. The levels of squalene, lathosterol, and HMG-CoA reductase mRNA were reduced in the brain of the voriconazole-treated animals as well, indicating a reduced cholesterol synthesis. Most of this effect may be due to a reduced utilization of cholesterol by CYP46A1. One of the side-effects of voriconazole is visual disturbances. Because CYP46A1 is also expressed in the neural retina, we discuss the possibility that the inhibition of CYP46A1 by voriconazole contributes to these visual disturbances.  相似文献   

16.
17.
The Mycobacterium tuberculosis cytochrome P450 enzyme CYP142 is encoded in a large gene cluster involved in metabolism of host cholesterol. CYP142 was expressed and purified as a soluble, low spin P450 hemoprotein. CYP142 binds tightly to cholesterol and its oxidized derivative cholest-4-en-3-one, with extensive shift of the heme iron to the high spin state. High affinity for azole antibiotics was demonstrated, highlighting their therapeutic potential. CYP142 catalyzes either 27-hydroxylation of cholesterol/cholest-4-en-3-one or generates 5-cholestenoic acid/cholest-4-en-3-one-27-oic acid from these substrates by successive sterol oxidations, with the catalytic outcome dependent on the redox partner system used. The CYP142 crystal structure was solved to 1.6 Å, revealing a similar active site organization to the cholesterol-metabolizing M. tuberculosis CYP125, but having a near-identical organization of distal pocket residues to the branched fatty acid oxidizing M. tuberculosis CYP124. The cholesterol oxidizing activity of CYP142 provides an explanation for previous findings that ΔCYP125 strains of Mycobacterium bovis and M. bovis BCG cannot grow on cholesterol, because these strains have a defective CYP142 gene. CYP142 is revealed as a cholesterol 27-oxidase with likely roles in host response modulation and cholesterol metabolism.  相似文献   

18.
Excessive absorption of intestinal cholesterol is a risk factor for atherosclerosis. This report examines the effect of cholecystokinin (CCK) on plasma cholesterol level and intestinal cholesterol absorption using the in vivo models of C57BL/6 wild-type and low density lipoprotein receptor knock-out (LDLR−/−) mice. These data were supported by in vitro studies involving mouse primary intestinal epithelial cells and human Caco-2 cells; both express CCK receptor 1 and 2 (CCK1R and CCK2R). We found that intravenous injection of [Thr28,Nle31]CCK increased plasma cholesterol levels and intestinal cholesterol absorption in both wild-type and LDLR−/− mice. Treatment of mouse primary intestinal epithelial cells with [Thr28,Nle31]CCK increased cholesterol absorption, whereas selective inhibition of CCK1R and CCK2R with antagonists attenuated CCK-induced cholesterol absorption. In Caco-2 cells, CCK enhanced CCK1R/CCK2R heterodimerization. Knockdown of both CCK1R and CCK2 or either one of them diminished CCK-induced cholesterol absorption to the same extent. CCK also increased cell surface-associated NPC1L1 (Niemann-Pick C1-like 1) transporters but did not alter their total protein expression. Inhibition or knockdown of NPC1L1 attenuated CCK-induced cholesterol absorption. CCK enhanced phosphatidylinositide 3-kinase (PI3K) and Akt phosphorylation and augmented the interaction between NPC1L1 and Rab11a (Rab-GTPase-11a), whereas knockdown of CCK receptors or inhibition of G protein βγ dimer (Gβγ) diminished CCK-induced PI3K and Akt phosphorylation. Inhibition of PI3K and Akt or knockdown of PI3K diminished CCK-induced NPC1L1-Rab11a interaction and cholesterol absorption. Knockdown of Rab11a suppressed CCK-induced NPC1L1 translocation and cholesterol absorption. These data imply that CCK enhances cholesterol absorption by activation of a pathway involving CCK1R/CCK2R, Gβγ, PI3K, Akt, Rab11a, and NPC1L.  相似文献   

19.
Mycobacteria share a common cholesterol degradation pathway initiated by oxidation of the alkyl side chain by enzymes of cytochrome P450 (CYP) families 125 and 142. Structural and sequence comparisons of the two enzyme families revealed two insertions into the N-terminal region of the CYP125 family (residues 58–67 and 100–109 in the CYP125A1 sequence) that could potentially sterically block the oxidation of the longer cholesterol ester molecules. Catalytic assays revealed that only CYP142 enzymes are able to oxidize cholesteryl propionate, and although CYP125 enzymes could oxidize cholesteryl sulfate, they were much less efficient at doing so than the CYP142 enzymes. The crystal structure of CYP142A2 in complex with cholesteryl sulfate revealed a substrate tightly fit into a smaller active site than was previously observed for the complex of CYP125A1 with 4-cholesten-3-one. We propose that the larger CYP125 active site allows for multiple binding modes of cholesteryl sulfate, the majority of which trigger the P450 catalytic cycle, but in an uncoupled mode rather than one that oxidizes the sterol. In contrast, the more unhindered and compact CYP142 structure enables enzymes of this family to readily oxidize cholesteryl esters, thus providing an additional source of carbon for mycobacterial growth.  相似文献   

20.
Insulin promotes hepatic apolipoprotein B100 (apoB100) degradation, whereas insulin resistance is a major cause of hepatic apoB100/triglyceride overproduction in type 2 diabetes. The cellular trafficking receptor sortilin 1 (Sort1) was recently identified to transport apoB100 to the lysosome for degradation in the liver and thus regulate plasma cholesterol and triglyceride levels. Genetic variation of SORT1 was strongly associated with cardiovascular disease risk in humans. The major goal of this study is to investigate the effect and molecular mechanism of insulin regulation of Sort1. Results showed that insulin induced Sort1 protein, but not mRNA, in AML12 cells. Treatment of PI3K or AKT inhibitors decreased Sort1 protein, whereas expression of constitutively active AKT induced Sort1 protein in AML12 cells. Consistently, hepatic Sort1 was down-regulated in diabetic mice, which was partially restored after the administration of the insulin sensitizer metformin. LC-MS/MS analysis further revealed that serine phosphorylation of Sort1 protein was required for insulin induction of Sort1 in a casein kinase 2-dependent manner and that inhibition of PI3K signaling or prevention of Sort1 phosphorylation accelerated proteasome-dependent Sort1 degradation. Administration of a PI3K inhibitor to mice decreased hepatic Sort1 protein and increased plasma cholesterol and triglyceride levels. Adenovirus-mediated overexpression of Sort1 in the liver prevented PI3K inhibitor-induced Sort1 down-regulation and decreased plasma triglyceride but had no effect on plasma cholesterol in mice. This study identified Sort1 as a novel target of insulin signaling and suggests that Sort1 may play a role in altered hepatic apoB100 metabolism in insulin-resistant conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号