首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.  相似文献   

2.
Interactions between Mycobacterium tuberculosis bacilli and alveolar macrophages have been extensively characterized, while similar analyses in epithelial cells have not been performed. In this study, we microscopically examined endosomal trafficking of M. tuberculosis strain Erdman in A549 cells, a human type II pneumocyte cell line. Immuno‐electron microscopic (IEM) analyses indicate that M. tuberculosis bacilli are internalized to a compartment labelled first with Rab5 and then with Rab7 small GTPase proteins. This suggests that, unlike macrophages, M. tuberculosis bacilli traffic to late endosomes in epithelial cells. However, fusion of lysosomes with the bacteria‐containing compartment appears to be inhibited, as illustrated by IEM studies employing LAMP‐2 and cathepsin‐L antibodies. Examination by transmission electron microscopy and IEM revealed M. tuberculosis‐containing compartments surrounded by double membranes and labelled with antibodies against the autophagy marker Lc3, providing evidence for involvement and intersection of the autophagy and endosomal pathways. Interestingly, inhibition of the autophagy pathway using 3‐methyladenine improved host cell viability and decreased numbers of viable intracellular bacteria recovered after 72 h post infection. Collectively, these datasuggest that trafficking patterns for M. tuberculosis bacilli in alveolar epithelial cells differ from macrophages, and that autophagy is involved this process.  相似文献   

3.
Low vitamin D levels in human immunodeficiency virus type-1 (HIV) infected persons are associated with more rapid disease progression and increased risk for Mycobacterium tuberculosis infection. We have previously shown that 1α,25-dihydroxycholecalciferol (1,25D3), the active form of vitamin D, inhibits HIV replication in human macrophages through the induction of autophagy. In this study, we report that physiological concentrations of 1,25D3 induce the production of the human cathelicidin microbial peptide (CAMP) and autophagic flux in HIV and M. tuberculosis co-infected human macrophages which inhibits mycobacterial growth and the replication of HIV. Using RNA interference for Beclin-1 and the autophagy-related 5 homologue, combined with the chemical inhibitors of autophagic flux, bafilomycin A1, an inhibitor of autophagosome-lysosome fusion and subsequent acidification, and SID 26681509 an inhibitor of the lysosome hydrolase cathepsin L, we show that the 1,25D3-mediated inhibition of HIV replication and mycobacterial growth during single infection or dual infection is dependent not only upon the induction of autophagy, but also through phagosomal maturation. Moreover, through the use of RNA interference for CAMP, we demonstrate that cathelicidin is essential for the 1,25D3 induced autophagic flux and inhibition of HIV replication and mycobacterial growth. The present findings provide a biological explanation for the benefits and importance of vitamin D sufficiency in HIV and M. tuberculosis-infected persons, and provide new insights into novel approaches to prevent and treat HIV infection and related opportunistic infections.  相似文献   

4.
Myeloid cell leukemia-1 (Mcl-1) plays an important role in various cell survival pathways. Some studies indicated that the expression of Mcl-1 was upregulated in host cells during infection with the virulent Mycobacterium tuberculosis strain, H37Rv. The present study was designed to investigate the effect of inhibiting Mcl-1 expression both in vivo and in vitro on apoptosis of host macrophages infected with M. tuberculosis using a small hairpin (sh)RNA. Mcl-1 expression was detected by the real time-polymerase chain reaction, western blotting, and immunohistochemistry. Flow cytometry and transmission electron microscopy were used to measure host macrophage apoptosis. We found elevated Mcl-1 levels in host macrophages infected with M. tuberculosis H37Rv. The expression of Mcl-1 was downregulated efficiently in H37Rv-infected host macrophages using shRNA. Knockdown of Mcl-1 enhanced the extent of apoptosis in H37Rv-infected host macrophages significantly. The increased apoptosis correlated with a decrease in M. tuberculosis colony forming units recovered from H37Rv-infected cells that were treated with Mcl-1-shRNA. Reducing Mcl-1 accumulation by shRNA also reduced accumulation of the anti-apoptotic gene, Bcl-2, and increased expression of the pro-apoptotic gene, Bax, in H37Rv-infected host macrophages. Our results showed that specific knockdown of Mcl-1 expression increased apoptosis of host macrophages significantly and decreased the intracellular survival of a virulent strain of M. tuberculosis. These data indicate that interference with Mcl-1 expression may provide a new avenue for tuberculosis therapy.  相似文献   

5.
6.
Augmentation of innate immune defenses is an appealing adjunctive strategy for treatment of pulmonary Mycobacterium tuberculosis infections, especially those caused by drug-resistant strains. The effect of intranasal administration of keratinocyte growth factor (KGF), an epithelial mitogen and differentiation factor, on M. tuberculosis infection in mice was tested in prophylaxis, treatment, and rescue scenarios. Infection of C57BL6 mice with M. tuberculosis resulted in inoculum size-dependent weight loss and mortality. A single dose of KGF given 1 day prior to infection with 105 M. tuberculosis bacilli prevented weight loss and enhanced pulmonary mycobacterial clearance (compared with saline-pretreated mice) for up to 28 days. Similar effects were seen when KGF was delivered intranasally every third day for 15 days, but weight loss and bacillary growth resumed when KGF was withdrawn. For mice with a well established M. tuberculosis infection, KGF given every 3 days beginning on day 15 postinoculation was associated with reversal of weight loss and an increase in M. tuberculosis clearance. In in vitro co-culture experiments, M. tuberculosis-infected macrophages exposed to conditioned medium from KGF-treated alveolar type II cell (MLE-15) monolayers exhibited enhanced GM-CSF-dependent killing through mechanisms that included promotion of phagolysosome fusion and induction of nitric oxide. Alveolar macrophages from KGF-treated mice also exhibited enhanced GM-CSF-dependent phagolysosomal fusion. These results provide evidence that administration of KGF promotes M. tuberculosis clearance through GM-CSF-dependent mechanisms and enhances host defense against M. tuberculosis infection.  相似文献   

7.
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.  相似文献   

8.
Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria.  相似文献   

9.
Clinical resistance to gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), in patients with lung cancer has been linked to acquisition of the T790M resistance mutation in activated EGFR or amplification of MET. Phosphatase and tensin homolog (PTEN) loss has been recently reported as a gefitinib resistance mechanism in lung cancer. The aim of this study was to evaluate the efficacy of radiotherapy in non‐small‐cell lung cancer (NSCLC) with acquired gefitinib resistance caused by PTEN deficiency to suggest radiotherapy as an alternative to EGFR TKIs. PTEN deficient‐mediated gefitinib resistance was generated in HCC827 cells, an EGFR TKI sensitive NSCLC cell line, by PTEN knockdown with a lentiviral vector expressing short hairpin RNA‐targeting PTEN. The impact of PTEN knockdown on sensitivity to radiation in the presence or absence of PTEN downstream signaling inhibitors was investigated. PTEN knockdown conferred acquired resistance not only to gefitinib but also to radiation on HCC827 cells. mTOR inhibitors alone failed to reduce HCC827 cell viability, regardless of PTEN expression, but ameliorated PTEN knockdown‐induced radioresistance. PTEN knockdown‐mediated radioresistance was accompanied by repression of radiation‐induced cytotoxic autophagy, and treatment with mTOR inhibitors released the repression of cytotoxic autophagy to overcome PTEN knockdown‐induced radioresistance in HCC827 cells. These results suggest that inhibiting mTOR signaling could be an effective strategy to radiosensitize NSCLC harboring the EGFR activating mutation that acquires resistance to both TKIs and radiotherapy due to PTEN loss or inactivation mutations. J. Cell. Biochem. 114: 1248–1256, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Low vitamin D levels in human immunodeficiency virus type-1 (HIV) infected persons are associated with more rapid disease progression and increased risk for Mycobacterium tuberculosis infection. We report that physiological concentrations of 1α,25-dihydroxycholecalciferol (1,25D3), the active form of vitamin D, inhibits M. tuberculosis and HIV replication in co-infected macrophages through human cathelicidin microbial peptide-dependent autophagy that requires phagosomal maturation. These findings provide a biological explanation for the importance of vitamin D sufficiency in HIV and M. tuberculosis-infected persons, and provide new insights into novel approaches to prevent and treat HIV infection and related opportunistic infections.  相似文献   

11.

Background

Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds ∼20 per macrophage but the precise nature of this demise has not been defined.

Methodology/Principal Findings

We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system.

Conclusions/Significance

Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis.  相似文献   

12.
Trypanosoma cruzi causes Chagas disease, a neglected illness that affects millions of people worldwide, especially in Latin America. The balance between biochemical pathways triggered by the parasite and host cells response will ultimately define the progression of a life-threatening disease, justifying the efforts to understand cellular mechanisms for infection restrain. In this interaction, parasite and host cells are affected by different physiological responses as autophagy modulation, which could be under intense cellular stress, such as nutrient deprivation, hormone depletion, or infection. Autophagy is a constitutive pathway that leads to degradation of macromolecules and cellular structures and may induce cell death. In Trypanosoma cruzi infection, the relevance of host autophagy is controversial regarding in vitro parasite intracellular life cycle. In the present study, we evaluated host cell autophagy during T. cruzi infection in phagocytic and non-professional phagocytic cells. We described that the presence of the parasite increased the number of LC3 puncta, a marker for autophagy, in cardiac cells and peritoneal macrophages in vitro. The induction of host autophagy decreased infection in macrophages in early and late time-periods. We suggest that starved phagocytic cells reduced internalization, also confirmed by inert particles and dead trypomastigotes. Whereas, in cardiac cells, starvation-induced autophagy decreased lipid droplets and infection in later time-point, by reducing parasite differentiation/proliferation. In ATG5 knockout MEF cells, we confirmed our hypothesis of autophagy machinery activation during parasite internalization, increasing infection. Our data suggest that host autophagy downregulates T. cruzi infection through impairing parasite intracellular life cycle, reducing the infection in primary culture cells.  相似文献   

13.
14.
The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL) in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG) prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence.  相似文献   

15.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.  相似文献   

16.
A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials.  相似文献   

17.

Background

An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission.

Methods

We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237.

Results

We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis.

Conclusions

This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.  相似文献   

18.
The ability of Mycobacterium tuberculosis (M. tuberculosis) to accumulate lipid-rich molecules as an energy source obtained from host cell debris remains interesting. Additionally, the potential of M. tuberculosis to survive under different stress conditions leading to its dormant state in pathogenesis remains elusive. The exact mechanism by which these lipid bodies generated in M. tuberculosis infection and utilized by bacilli inside infected macrophage for its survival is still not understood. In this, during bacillary infection, many metabolic pathways are involved that influence the survival of M. tuberculosis for their own support. However, the exact energy source derived from infecting host cells remain elusive. Therefore, this study highlights several alternative energy sources in the form of triacylglycerol (TAG) and fatty acids, i.e. oleic acids accumulation, which are essential in dormancy-like state under M. tuberculosis infection. The prominent stage in tuberculosis (TB) infection is re-establishment of M. tuberculosis under stress conditions and deployment of a confined strategy to utilize these biomolecules for its persistence survival. So, growing in our understanding of these pathways will help us in accelerating therapies, which could reduce TB prevalence world widely.  相似文献   

19.
20.
Mycobacterium tuberculosis has the potential to escape various cellular defense mechanisms for its survival which include various oxidative stress responses, inhibition of phagosome-lysosomes fusion and alterations in cell death mechanisms of host macrophages that are crucial for its infectivity and dissemination. Diabetic patients are more susceptible to developing tuberculosis because of impairement of innate immunity and prevailing higher glucose levels. Our earlier observations have demonstrated alterations in the protein profile of M. tuberculosis exposed to concurrent high glucose and tuberculosis conditions suggesting a crosstalk between host and pathogen under high glucose conditions. Since high glucose environment plays crucial role in the interaction of mycobacterium with host macrophages which provide a niche for the survival of M. tuberculosis, it is important to understand various interactive mechanisms under such conditions. Initial phagocytosis and containment of M. tuberculosis by macrophages, mode of macrophage cell death, respiratory burst responses, Mycobacterium and lysosomal co-localization were studied in M. tuberculosis H37Rv infected cells in the presence of varied concentrations of glucose in order to mimic diabetes like conditions. It was observed that initial attachment, phagocytosis and later containment were less effective under high glucose conditions in comparison to normal glucose. Mycobacterium infected cells showed more necrosis than apoptosis as cell death mechanism during the course of infection under high glucose concentrations. Co-localization and respiratory burst assay also indicated evasion strategies adopted by M. tuberculosis under such conditions. This study by using THP1 macrophage model of tuberculosis and high glucose conditions showed immune evasion strategies adapted during co-pathogenesis of tuberculosis and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号