首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages.

We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation.

The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages.

Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.  相似文献   


2.
3.
The role of the accessory gene product Vpr during human immunodeficiency virus type 1 infection remains unclear. We have used the yeast two-hybrid system to identify cellular proteins that interact with Vpr and could be involved in its function. A cDNA clone which encodes the human uracil DNA glycosylase (UNG), a DNA repair enzyme involved in removal of uracil in DNA, has been isolated. Interaction between Vpr and UNG has been demonstrated by in vitro protein-protein binding assays using translated, radiolabeled Vpr and UNG recombinant proteins expressed as a glutathione S-transferase fusion protein. Conversely, purified UNG has been demonstrated to interact with Vpr recombinant protein expressed as a glutathione S-transferase fusion protein. Coimmunoprecipitation experiments confirmed that Vpr and UNG are associated within cells expressing Vpr. By using a panel of C- and N-terminally deleted Vpr mutants, we have determined that the core protein of Vpr, spanning amino acids 15 to 77, is involved in the interaction with UNG. We also demonstrate by in vitro experiments that the enzymatic activity of UNG is retained upon interaction with Vpr.  相似文献   

4.
Following immunization with HIV-1 infected cells, a hybridoma cell line termed 9F11 was established from the P3U-1 myeloma line fused with lymphocytes from a trans-chromosome (TC) mouse, that harbors human chromosomes containing immunoglobulin genes. The 9F11 human IgM monoclonal antibody (9F11 Ab) reacts with HIV-1 infected MOLT4 cells but not with uninfected MOLT4 cells, and causes immune cytolysis with homologous human complement at a concentration as low as 0.4 microg/ml. This Ab was used to perform immunoscreening of a cDNA expression library derived from HIV-1 infected cells. All positive cDNA clones contained SWAP-70 cDNA. SWAP-70 RNA and protein expression are much stronger in HIV-1 infected cells. SWAP-70 was also detected on the surface of HIV-1 infected cells by flow cytometric analysis. The monocyte cell line U937 cells expresses SWAP-70 on its cell surface regardless of whether it was infected with HIV-1. Furthermore, among PBMCs surface expression of SWAP-70 was detected on CD21+, CD56+ and CD14+ cells. Although CD3+ cells scarcely express SWAP-70 on their surface, once activated, they become positive. SWAP-70 may therefore serve as a marker for T cell differentiation as well as for HIV-1 infection.  相似文献   

5.
Upregulation of survivin by HIV-1 Vpr   总被引:5,自引:0,他引:5  
The human survivin gene belongs to the family of inhibitor of apoptosis proteins (IAP) and is involved in apoptosis inhibition and regulation of cell division. The survivin gene is the only member of the IAP family whose expression is known to be regulated through the cell cycle. Survivin expression reaches the highest levels during the G2/M transition and then is rapidly degraded during the G1 phase. Here we report that the human immunodeficiency virus type 1 (HIV-1) upregulates Survivin expression via survivin promoter transactivation. Vpr, an HIV-1 accessory protein that induces cell cycle arrest in G2/M, is necessary and sufficient for this effect. Blocking Vpr-induced G2/M arrest leads to elimination of the survivin promoter transactivation by Vpr. Our results suggest that Survivin may be actively involved in regulating cell viability during HIV-1 infection.  相似文献   

6.
7.
8.
Mitochondrial membrane permeabilization by HIV-1 Vpr   总被引:1,自引:0,他引:1  
The mitochondrion is a privileged target for apoptosis-modulatory proteins of viral origin. Thus, viral protein R (Vpr) can target mitochondria and induce apoptosis via a specific interaction with the permeability transition pore complex (PTPC). Vpr cooperates with the adenine nucleotide translocator (ANT) to form large conductance channels and to trigger all the hallmarks of mitochondrial membrane permeabilization (MMP). The Vpr/ANT interaction is direct, since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT, ADP, ATP, or by Bcl-2. Accordingly, Vpr modulates MMP through direct structural and functional interactions with PTPC proteins.  相似文献   

9.
Use of combination anti-retroviral drug regimens including protease inhibitors dramatically decreased morbidity and mortality rates in HIV-1 infected individuals. However, such combination therapies appear to have many side effects, in addition to the emergence of resistant HIV-1 strains. Therefore, in this study we sought to elucidate novel therapeutic principles against HIV-1 infection. We examined the effects of electrical stimulation on both chronically HIV-1LAI infected HeLa cells (P6 HeLa/HIV-1LAI) and uninfected cells (P6 HeLa). Cells were cultured on an optically transparent electrode and application of potential at 1.0 V vs Ag/AgCl was performed over time periods ranging from 10 min to 60 min. Both P6 HeLa/HIV-1LAI and P6 HeLa cells were progressively damaged as the duration of electrical stimulation increased. However, P6 HeLa/HIV-1LAl cells were much more influenced by electrical stimulation than P6 HeLa cells. The difference in damage rate was most obvious at 30 min of electrical stimulation, with damaged cells accounting for about 87% and 4% of P6 HeLa/HIV-1LAI and P6 HeLa cells, respectively. After the application of potential for 20 min, the proliferation of P6 HeLa/HIV-1LAI cells was markedly inhibited, while the P6 HeLa cells proliferated to an extent similar to that of uninfected cells without application of potential. These results indicate that sensitivity to electrical stimulation is much higher in chronically HIV-1 infected cells than in uninfected cells. This could be considered as a useful new approach against HIV-1 infection.  相似文献   

10.
11.

Background

HIV-1 integrase (IN) is an emerging drug target, as IN strand transfer inhibitors (INSTIs) are proving potent antiretroviral agents in clinical trials. One credible theory sees INSTIs as docking at the cellular (acceptor) DNA-binding site after IN forms a transitional complex with viral (donor) DNA. However, mapping of the DNA and INSTI binding sites within the IN catalytic core domain (CCD) has been uncertain.

Methods

Structural superimpositions were conducted using the SWISS PDB and Cn3D free software. Docking simulations of INSTIs were run by a widely validated genetic algorithm (GOLD).

Results

Structural superimpositions suggested that a two-metal model for HIV-1 IN CCD in complex with small molecule, 1-(5-chloroindol-3-yl)-3-(tetrazoyl)-1,3-propandione-ene (5CITEP) could be used as a surrogate for an IN/viral DNA complex, because it allowed replication of contacts documented biochemically in viral DNA/IN complexes or displayed by a crystal structure of the IN-related enzyme Tn5 transposase in complex with transposable DNA. Docking simulations showed that the fitness of different compounds for the catalytic cavity of the IN/5CITEP complex significantly (P < 0.01) correlated with their 50% inhibitory concentrations (IC50s) in strand transfer assays in vitro. The amino acids involved in inhibitor binding matched those involved in drug resistance. Both metal binding and occupation of the putative viral DNA binding site by 5CITEP appeared to be important for optimal drug/ligand interactions. The docking site of INSTIs appeared to overlap with a putative acceptor DNA binding region adjacent to but distinct from the putative donor DNA binding site, and homologous to the nucleic acid binding site of RNAse H. Of note, some INSTIs such as 4,5-dihydroxypyrimidine carboxamides/N -Alkyl-5-hydroxypyrimidinone carboxamides, a highly promising drug class including raltegravir/MK-0518 (now in clinical trials), displayed interactions with IN reminiscent of those displayed by fungal molecules from Fusarium sp., shown in the 1990s to inhibit HIV-1 integration.

Conclusion

The 3D model presented here supports the idea that INSTIs dock at the putative acceptor DNA-binding site in a IN/viral DNA complex. This mechanism of enzyme inhibition, likely to be exploited by some natural products, might disclose future strategies for inhibition of nucleic acid-manipulating enzymes.  相似文献   

12.
13.
14.
Identifying the membrane proteome of HIV-1 latently infected cells   总被引:11,自引:0,他引:11  
Profiling integral plasma membrane proteins is of particular importance for the identification of new biomarkers for diagnosis and for drug development. We report in this study the identification of surface markers by performing comparative proteomics of established human immunodeficiency virus-1 (HIV-1) latent cell models and parental cell lines. To this end we isolated integral membrane proteins using a biotin-directed affinity purification method. Isolated proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) after in gel digestion. Seventeen different proteins were found to vary on the surface of T-cells due to HIV-1 infection. Of these proteins, 47% were integral membrane proteins, and 18% were membrane-associated. Through the use of complementary techniques such as Western blotting and fluorescent staining, we confirmed the differential expression of some of the proteins identified by MALDI-TOF including Bruton's tyrosine kinase and X-linked inhibitor of apoptosis. Finally, using phosphatidylinositol 3-kinase inhibitors and flavopiridol to inhibit Bruton's tyrosine kinase localization at the membrane and X-linked inhibitor of apoptosis protein expression, respectively, we showed that HIV-1 latently infected cells are more sensitive to these drugs than uninfected cells. This suggests that HIV-1 latently infected cells may be targeted with drugs that alter several pathways that are essential for the establishment and maintenance of latency.  相似文献   

15.
The DNA repair protein HHR23A is a highly conserved protein that functions in nucleotide excision repair. HHR23A contains two ubiquitin associated domains (UBA) that are conserved in a number of proteins with diverse functions involved in ubiquitination, UV excision repair, and signaling pathways via protein kinases. The cellular binding partners of UBA domains remain unclear; however, we previously found that the HHR23A UBA(2) domain interacts specifically with the HIV-1 Vpr protein. Analysis of the low resolution solution structure of HHR23A UBA(2) revealed a hydrophobic loop region of the UBA(2) domain that we predicted was the interface for protein/protein interactions. Here we present results of in vitro binding studies that demonstrate the requirement of this hydrophobic loop region for interaction with human immunodeficiency virus (HIV-1) Vpr. A single point mutation of the Pro at residue 333 to a Glu totally abolishes the binding of HIV-1 Vpr to UBA(2). High resolution NMR structures of the binding deficient UBA(2) mutant P333E as well as of the wild-type UBA(2) domain were determined to compare the effect of this mutation on the structure. Small but significant differences are observed only locally at the site of the mutation. The biochemical and structural analysis confirms the function of the HHR23A UBA(2) GFP-loop as the protein/protein interacting domain.  相似文献   

16.
17.
Addition of Vpr C-terminus to various cell types provokes cell apoptosis. This property was recently shown useful to develop inhibitors of cell proliferation. In that context, we investigated the cellular uptake of rhodamine- and fluorescein-labeled Vpr(52–96) peptides to understand the mechanism of Vpr C-terminus entry into cells. Dynamic light scattering data indicated that this peptide spontaneously formed polydispersed aggregates in cell culture medium. The fluorescently labeled Vpr(52–96) peptide was efficiently internalized, appearing either as large fluorescent patches in the cytoplasm or in a more diffuse form throughout the cell. Using isothermal titration calorimetry, we demonstrated that Vpr(52–96) can tightly associate with heparin, a glycosaminoglycan analog of heparan sulphate, suggesting a central role of the ubiquitous cell surface-associated heparan sulphate proteoglycans for the internalization of Vpr C-terminus. Fluorescently-labeled transferrin and methyl-β-cyclodextrin showed that the Vpr C-terminus was mediated through clathrin- and caveolae/raft-dependent endocytosis. We found that Vpr C-terminus uptake was partly blocked at 4 °C suggesting the importance of membrane fluidity for Vpr C-terminus entry. In fact, atomic force microscopy and liposome leakage further indicated that the Vpr peptide can destabilize and disrupt model membrane bilayers, suggesting that this mechanism may contribute to the passive entry of the peptide. Finally, using fluorescence lifetime imaging, we found that the Vpr(52–96) peptide was stable in cells for at least 48 h, probably as a consequence of the poor accessibility of the peptide to proteolytic enzymes in aggregates.  相似文献   

18.
Human immunodeficiency virus, type 1 (HIV-1), vpr gene encodes a 14-kDa virion-associated protein, which exhibits significant effects on human cells. One important property of Vpr is its ability to induce apoptosis during infection. Apoptotic induction is likely to play a role in the pathogenesis of AIDS. However, the pathway of apoptosis is not clearly defined. In this report we investigate the mechanism of apoptosis induced by HIV-1 Vpr using a Vpr pseudotype viral infection system or adeno delivery of Vpr in primary human lymphoid cells and T-cells. With either vector, HIV-1 Vpr induced cell cycle arrest at the G(2)/M phase and apoptosis in lymphoid target cells. Furthermore, we observed that with both vectors, caspase 9, but not caspase 8, was activated following infection of human peripheral blood mononuclear cell with either Vpr-positive HIV virions or adeno-delivered Vpr. Activation of the caspase 9 pathway resulted in caspase 3 activation and apoptosis in human primary cells. These effects were coincident with the disruption of the mitochondrial transmembrane potential and induction of cytochrome c release by Vpr. The Vpr-induced signaling pathway did not induce CD95 or CD95L expression. Bcl-2 overexpressing cells succumb to Vpr-induced apoptosis. These studies illustrate that Vpr induces a mitochondria-dependent apoptotic pathway that is distinct from apoptosis driven by the Fas-FasL pathway.  相似文献   

19.
HIV-infected individuals currently cannot be completely cured because existing antiviral therapy regimens do not address HIV provirus DNA, flanked by long terminal repeats (LTRs), already integrated into host genome. Here, we present a possible alternative therapeutic approach to specifically and directly mediate deletion of the integrated full-length HIV provirus from infected and latently infected human T cell genomes by using specially designed zinc-finger nucleases (ZFNs) to target a sequence within the LTR that is well conserved across all clades. We designed and screened one pair of ZFN to target the highly conserved HIV-1 5′-LTR and 3′-LTR DNA sequences, named ZFN-LTR. We found that ZFN-LTR can specifically target and cleave the full-length HIV-1 proviral DNA in several infected and latently infected cell types and also HIV-1 infected human primary cells in vitro. We observed that the frequency of excision was 45.9% in infected human cell lines after treatment with ZFN-LTR, without significant host-cell genotoxicity. Taken together, our data demonstrate that a single ZFN-LTR pair can specifically and effectively cleave integrated full-length HIV-1 proviral DNA and mediate antiretroviral activity in infected and latently infected cells, suggesting that this strategy could offer a novel approach to eradicate the HIV-1 virus from the infected host in the future.  相似文献   

20.
To examine the factors that control the extent of incorporation of Vpr into the virus particles, we utilized an epitope-tagging approach with Flag (FL) as the epitope for quantitation. We generated expression plasmids containing Vpr-FL and Vpr E21,24P-FL and also HIV-1 proviral DNA containing Vpr-FL (NL-Vpr-FL). Immunoblot analysis using Flag antibodies revealed that virus particles derived from co-transfection of NL-Vpr-FL and Vpr-FL showed an enhanced level of Vpr-FL in comparison to NL-Vpr-FL derived virus. These results suggest that the amount of incorporation of Vpr into the virus particles is flexible and may be modulated by its expression level in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号