首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

2.
3.
RNA编辑是一个十分重要的生物细胞分子机制。作为转录后修饰的一步,它可以增加蛋白质组学多样性,改变转录产物的稳定性,调节基因表达等。RNA编辑失调会导致各种疾病,包括神经疾病和癌症。在动物中,腺苷到肌苷(A-to-I)的编辑是最普遍的。高通量测序技术的进步大大提高了在全局范围内检测和量化RNA编辑的能力,使得RNA编辑的大规模全基因组分析变得可行,产生了一系列基于高通量测序技术的RNA编辑位点预测方法。通过对这些方法进行介绍、总结和分析,为RNA编辑的进一步研究提供一些思路。  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Catalysed by members of the adenosine deaminase acting on RNA (ADAR) family of enzymes, adenosine-to-inosine (A-to-I) editing converts adenosines in RNA molecules to inosines, which are functionally equivalent to guanosines. Recently, global approaches to studying this widely conserved phenomenon have emerged. The use of bioinformatics, high-throughput sequencing and other approaches has increased the number of known editing sites by several orders of magnitude, and we now have a greater understanding of the control and the biological significance of editing. This Progress article reviews some of these recent global studies and their results.  相似文献   

14.
15.
基于转录组测序数据识别黑猩猩RNA编辑位点   总被引:1,自引:1,他引:0  
使用转录组测序(RNA-Seq)数据识别黑猩猩RNA编辑位点,探索了RNA编辑的识别机制以及潜在的功能影响.基于黑猩猩RNA-Seq数据与基因组序列的比对信息发现RNA-DNA错配位点,并构建编辑位点候选集.从中滤除基因组或转录组测序质量低的位点,其他的过滤条件包括3′端测不准、覆盖度、SNP位点以及估算的编辑水平.构建二项分布统计模型和Bonferroni多重检验滤除候选集中的随机错误,得到RNA编辑位点.选取落在已知基因上的编辑位点进行功能分析,并用Two Sample Logo软件分析编辑位点上下游序列的特征.识别出黑猩猩12种碱基替换型RNA编辑位点8 334个,其中有41个编辑位点改变原有的氨基酸,另有3个编辑位点落在microRNA(miRNA)潜在靶基因的种子结合区.统计学分析表明,分别有640和872个RNA编辑位点存在组织和性别差异.上下游碱基频率分析表明,多种类型的编辑位点紧邻碱基具有显著偏好.结果显示, RNA编辑在黑猩猩体内大量存在,且潜在具有重要的生物学功能,为进一步深入研究灵长类RNA编辑的机制奠定了基础.  相似文献   

16.
Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer''s disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients’ brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing.  相似文献   

17.
18.
目的:研究人A-to-I RNA编辑事件对外显子剪接增强子(ESE)的潜在影响。方法:搜集文献报道的人A-to-I RNA编辑位点,并筛选包含有A-to-I RNA编辑位点的ESE,分析人A-to-I RNA编辑前后单碱基变化对ESE的潜在影响。结果:3640个A-to-I RNA编辑位点可能使其所在的ESE功能发生潜在改变;A-to-I RNA编辑事件对不同类型ESE的潜在影响不同。结论:A-to-I RNA编辑事件可能潜在影响ESE的功能,对ESE的潜在影响为量的调节,而非质的改变。  相似文献   

19.
20.
Endonuclease V is highly conserved, both structurally and functionally, from bacteria to humans, and it cleaves the deoxyinosine-containing double-stranded DNA in Escherichia coli, whereas in Homo sapiens it catalyses the inosine-containing single-stranded RNA. Thus, deoxyinosine and inosine are unexpectedly produced by the deamination reactions of adenine in DNA and RNA, respectively. Moreover, adenosine-to-inosine (A-to-I) RNA editing is carried out by adenosine deaminase acting on dsRNA (ADARs). We focused on Arabidopsis thaliana endonuclease V (AtEndoV) activity exhibiting variations in DNA or RNA substrate specificities. Since no ADAR was observed for A-to-I editing in A. thaliana, the possibility of inosine generation by A-to-I editing can be ruled out. Purified AtEndoV protein cleaved the second and third phosphodiester bonds, 3′ to inosine in single-strand RNA, at a low reaction temperature of 20–25°C, whereas the AtEndoV (Y100A) protein bearing a mutation in substrate recognition sites did not cleave these bonds. Furthermore, AtEndoV, similar to human EndoV, prefers RNA substrates over DNA substrates, and it could not cleave the inosine-containing double-stranded RNA. Thus, we propose the possibility that AtEndoV functions as an RNA substrate containing inosine induced by RNA damage, and not by A-to-I RNA editing in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号