首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(1):204-218
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.

In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

2.
Wang X  Zhong P  Luo PP  Wang KC 《PloS one》2011,6(4):e19023
A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H) and V(L) for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H) frameworks and V(H)-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.  相似文献   

3.
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.  相似文献   

4.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

5.
The Thomsen-Friedenreich disaccharide (TF) is a promising target antigen for tumor immunotherapy, since it is almost exclusively expressed in carcinoma tissues. The TF-specific antibodies generated so far are IgMs of mouse origin with limited therapeutic potential. Phage-displayed scFv repertoires are an established source for recombinant antibodies; however, we were unable to identify scFvs binding to TF when applying libraries in the standard monovalent display format of phagemid systems. Here, we report on the successful selection of TF-specific antibody fragments using a multivalent scFv phagemid library format based on shortened linkers (one amino acid residue). The libraries were constructed from mice immunized with asialoglycophorin and selected using TF displayed on two different carrier molecules in combination with the proteolytically cleavable helper phage KM13. All isolated clones encoded the same framework genes and the same complementarity-determining regions. After affinity maturation only scFv with the founder sequence were selected from secondary repertoires. This indicates a very narrow sequence window for TF-specific antibodies. Investigating other linker-length formats revealed a clear inverse correlation between linker length and binding activity both as soluble proteins and displayed on phages. The highest affinity was obtained with the tetrameric format. The selected scFv was specific for TF on various carrier molecules and tumor cells and performed well in ELISA and immunohistochemistry. We postulate that scFv phagemid library formats with short linkers (i.e. multimeric scFvs) may, in general, be advantageous in selections for the generation of scFvs against carbohydrate epitopes or other epitopes associated with low intrinsic affinity per binding site), and expect that they will be superior in applications for diagnosis or therapy.  相似文献   

6.
《MABS-AUSTIN》2013,5(6):552-562
Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.  相似文献   

7.
Recombinant antibody fragments, most notably Fab and scFv, have become important tools in research, diagnostics and therapy. Since different recombinant antibody formats exist, it is crucial to understand the difference in their respective biophysical properties. We assessed the potential stability benefits of changing the scFv into the Fab format, the influence of the variable domains on the stability of the Fab fragment, and the influence of the interchain disulfide bond in the Fab fragment. To analyze domain interactions, the Fab fragment was broken down into its individual domains, several two-domain assemblies and one three-domain assembly. The equilibrium denaturation properties of these constructs were then compared to those of the Fab fragment. It was found that mutual stabilization occurred across the VH/VL and the CH1/CL interface, whereas the direct interaction between the V) and the CL domain had no influence on the stability of either domain. This observation can be explained by the different interfaces used for interaction. In contrast, the whole CH1CL and VHVL unit showed significant mutual stabilization, indicating a high degree of cooperation between the VH/VL and CH1/CL interface. The interchain disulfide bond in the Fab fragment plays an essential role in this stabilization. In addition to the effects of domain association on the thermodynamic (equilibrium) stability, Fab fragments differ from scFv fragments of similar equilibrium stability by having a very slow unfolding rate. This kinetic stabilization may increase significantly the resistance of Fab fragments against short time exposure to adverse conditions.  相似文献   

8.
In humans, NKG2D is an activating receptor on natural killer (NK) cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet. Here, we describe the generation, affinity maturation, and characterization of a fully human monoclonal antibody to human NKG2D. Using phage display technology based on a newly generated naïve human Fab library in phage display vector pC3C followed by a tandem chain shuffling process designed for minimal deviation from natural human antibody sequences, we selected a human Fab, designated KYK-2.0, with high specificity and affinity to human NKG2D. KYK-2.0 Fab blocked the binding of the natural human NKG2D ligands MICA, MICB, and ULBP2 as potently as a commercially available mouse anti-human NKG2D monoclonal antibody in immunoglobulin G (IgG) format. Conversion of KYK-2.0 Fab to IgG1 resulted in subnanomolar avidity for human NKG2D. KYK-2.0 IgG1 was found to selectively recognize defined subpopulations of human lymphocytes known to express NKG2D, that is, the majority of human CD8+, CD16+, and CD56+ cells as well as a small fraction of human CD4+ cells. In solution, KYK-2.0 IgG1 interfered with the cytolytic activity of ex vivo expanded human NK cells. By contrast, immobilized KYK-2.0 IgG1 was found to strongly induce human NK cell activation. The dual antagonistic and agonistic activity promises a wide range of therapeutic applications for KYK-2.0 IgG1 and its derivatives.  相似文献   

9.
Phage‐displayed synthetic antibody (Ab) repertoires have become a major source of affinity reagents for basic and clinical research. Specific Abs identified from such libraries are often screened as fragments antigen binding (Fabs) produced in bacteria, and those with desired biochemical characteristics are reformatted for production as full‐length immunoglobulin G (IgG) in mammalian cells. The conversion of Fabs to IgGs is a cumbersome and often rate‐limiting step in the development of Abs. Moreover, biochemical properties required for lead IgG development are not always shared by the Fabs, and these issues are not uncovered until a significant effort has been spent on Abs that ultimately will not be useful. Thus, there is a need for simple and rapid techniques to convert phage‐displayed Fabs to IgGs at an early stage of the Ab screening process. We report the generation of a highly diverse phage‐displayed synthetic single‐chain Fab (scFab) library, in which the light and heavy chains were tethered with an optimized linker. Following selection, pools of scFabs were converted to single‐chain IgGs (scIgGs) en masse, enabling facile screening of hundreds of phage‐derived scIgGs. We show that this approach can be used to rapidly screen for and select scIgGs that target cell‐surface receptors, and scIgGs behave the same as conventional IgGs.  相似文献   

10.
Non-immune (na?ve) phage antibody libraries have become an important source of antibodies for reagent, diagnostic, and therapeutic use. To date, reported na?ve libraries have been constructed in phagemid vectors as fusions to pIII, yielding primarily single copy (monovalent) display of antibody fragments. For this work, we subcloned the single chain Fv (scFv) gene repertoire from a na?ve phagemid antibody library into a true phage vector to create a multivalently displayed scFv phage library. Compared to monovalently displayed scFv, multivalent phage display resulted in improved efficiency of display as well as antibody selection. A greater number of antibodies were obtained and at earlier rounds of selection. Such increased efficiency allows the screening for binding antibodies after a single round of selection, greatly facilitating automation. Expression levels of antigen-binding scFv were also higher than from the phagemid library. In contrast, the affinities of scFv from the phage library were lower than from the phagemid library. This could be overcome by utilizing the scFv in a multivalent format, by affinity maturation, or by converting the library to monovalent display after the first round of selection.  相似文献   

11.
Phage display of combinatorial antibody libraries is a versatile tool in the field of antibody engineering, with diverse applications including monoclonal antibody (mAb) discovery, affinity maturation, and humanization. To improve the selection efficiency of antibody libraries, we developed a new phagemid display system that addresses the complication of bald phage propagation. The phagemid facilitates the biotinylation of fragment of antigen binding (Fab) antibody fragments displayed on phage via Sortase A catalysis and the subsequent enrichment of Fab-displaying phage during selections. In multiple contexts, this selection approach improved the enrichment of target-reactive mAbs by depleting background phage. Panels of cancer cell line-reactive mAbs with high diversity and specificity were isolated from a naïve chimeric rabbit/human Fab library using this approach, highlighting its potential to accelerate antibody engineering efforts and to empower concerted antibody drug and target discovery.  相似文献   

12.
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.  相似文献   

13.
目的:建立一种高效噬菌体文库构建方法,获得抗鸡卵清蛋白(ovalbumin,OVA)的单链抗体(scFv)噬菌体展示文库,筛选鉴定获得OVA单链抗体。方法:用OVA蛋白免疫Balb/C小鼠,选取血清抗体效价高的小鼠提取脾脏RNA,利用RT-PCR方法扩增获得小鼠重链和小鼠轻链基因。通过无缝连接酶一步将小鼠重链基因、轻链基因和linker DNA连接起来,插入噬菌体表达载体中,构建OVA scFv噬菌体展示文库。测定文库容量,对文库进行富集筛选,ELISA鉴定阳性克隆,测序后构建真核表达载体,转入Expi-CHO悬浮细胞进行真核表达,利用Western blot进行鉴定。结果:成功获得库容量为1. 2×10~7cfu的OVA scFv噬菌体展示文库,并从中筛选出8个阳性克隆,选取效价最高的2号克隆,在Expi-CHO悬浮细胞中表达获得可溶性抗体。结论:建立了一种高效构建scFv噬菌体文库的方法,筛选获得高结合活性的OVA单链抗体,并成功进行了真核表达,为OVA ELISA检测试剂盒的研制奠定了基础。  相似文献   

14.
人源单克隆抗人免疫缺陷病毒1型抗体Fab段基因的获得   总被引:1,自引:0,他引:1  
应用噬苏体抗体库技术有效地筛选出了多株抗HIV-1人源单克隆抗体。以逆转录聚合酶链反应(RT-PCR)从HIV-1感染者外周血淋巴细胞中扩增抗体轻重链可变区基因,插入载体pCOMB3,建立噬菌体抗体库。分别以HIV-1gp120和gp160为固相抗原,经过多轮筛选,从中获得了多株抗HIV-1gp41、gp120和gp160的单克隆抗体Fab段基因。抗HIV特异性噬菌体抗体随抗体库的筛选高度富集,抗  相似文献   

15.
《MABS-AUSTIN》2013,5(2):437-445
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.  相似文献   

16.
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.  相似文献   

17.
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.  相似文献   

18.
Toward selection of internalizing antibodies from phage libraries   总被引:11,自引:0,他引:11  
Antibodies which bind cell surface receptors in a manner whereby they are endocytosed are useful molecules for the delivery of drugs, toxins, or DNA into the cytosol of mammalian cells for therapeutic applications. Traditionally, internalizing antibodies have been identified by screening hybridomas. For this work, we studied a human scFv (C6.5) which binds ErbB2 to determine the feasibility of directly selecting internalizing antibodies from phage libraries and to identify the most efficient display format. Using wild-type C6.5 scFv displayed monovalently on a phagemid, we demonstrate that anti-ErbB2 phage antibodies can undergo receptor-mediated endocytosis. Using affinity mutants and dimeric diabodies of C6.5 displayed as either single copies on a phagemid or multiple copies on phage, we define the role of affinity, valency, and display format on phage endocytosis and identify the factors that lead to the greatest enrichment for internalization. Phage displaying bivalent diabodies or multiple copies of scFv were more efficiently endocytosed than phage displaying monomeric scFv and recovery of infectious phage was increased by preincubation of cells with chloroquine. Measurement of phage recovery from within the cytosol as a function of applied phage titer indicates that it is possible to select for endocytosable antibodies, even at the low concentrations that would exist for a single phage antibody member in a library of 10(9).  相似文献   

19.
In the emerging field of proteomics, there is an urgent need for catcher molecules such as antibodies for detecting the proteome or parts of the proteome in a microarray format. A suitable source for providing a large diversity of binders is obtained by combinatorial libraries, such as phage display libraries of single chain antibody fragments (scFv) or Fab fragments. To find novel binders from the n-CoDeR libraries with a high throughput, we have automated the screening process with robotics. The automated system is configured to screen tens of thousands of clones per day to target antigens in various formats, including peptides and soluble proteins, as well as cell-bound targets; thus, it is well designed to meet demands from the proteomics area.  相似文献   

20.
噬菌体抗体是继多克隆抗体、单克隆抗体之后兴起的第3代基因工程抗体.噬菌体抗体库技术是抗体基因文库技术和噬菌体表面展示技术相结合形成的一项新技术与方法,在生物科学领域极具潜力.现主要就近年来该技术在抗体基因扩增、抗体库的构建、筛选方法等方面的进展进行综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号