首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High fat diet feeding results in hyperglycemia and insulin resistance, which is a major pathological feature of type-2 diabetes mellitus. The use of oral hypoglycaemic drugs is limited due to its deleterious side effects and there is a need to find more efficacious agents for diabetes management. Hence, it is of interest to show the mechanism of action of β-Caryophyllene on insulin signalling molecules in gastrocnemius muscle of high fat diet - induced type-2 diabetic rats. An oral effective dose of with β-Caryophyllene (200 mg/kg b.wt) was given for 30 days to high fat diet (comprising 2% cholesterol, 1% cholic acid, 30% coconut oil, 67% conventional rat feed) and fructose fed type-2 diabetic rats to find out whether β-Caryophyllene regulates IRS-1/Akt pathway of insulin signalling. The data shows that, β-Caryophyllene treatment significantly increased the mRNA and protein expression of insulin receptor (IR) in diabetic rats whereas there is no significant difference in mRNA expression of insulin receptor-substrate-1 (IRS-1) was observed among groups. The Akt mRNAand GLUT-4mRNA and protein level were also improved in gastrocnemius muscle of type-2 diabetic rats. Thus, we concluded that β-Caryophyllene could be used as potential phyto medicine for type-2 diabetes management.  相似文献   

3.

Introduction

Infant formula-feeding is associated with reduced insulin sensitivity. In rodents and healthy humans, advanced glycation end product (AGE)-rich diets exert diabetogenic effects. In comparison with human breast-milk, infant formulas contain high amounts of AGEs. We assessed the role of AGEs in infant-formula-consumption-associated insulin resistance.

Methods

Total plasma levels of Nε-(carboxymethyl)lysine (CML), AGEs-associated fluorescence (λex = 370 nm/λem = 445 nm), soluble adhesion molecules, markers of micro- binflammation (hsCRP), oxidative stress (malondialdehyde, 8-isoprostanes) and leptinemia were determined, and correlated with insulin sensitivity in a cross-sectional study in 166 healthy term infants aged 3-to-14 months, subdivided according to feeding regimen (breast-milk- vs. infant formula-fed) and age (3-to-6-month-olds, 7-to-10-month-olds, and 11-to-14-month-old infants). Effects of the consumption of low- vs. high-CML-containing formulas were assessed. 36 infants aged 5.8±0.3 months were followed-up 7.5±0.3 months later.

Results

Cross-sectional study: 3-to-6-month-olds and 7-to-10-month-old formula-fed infants presented higher total plasma CML levels and AGEs-associated fluorescence (p<0.01, both), while only the 3-to-6-month-olds displayed lower insulin sensitivity (p<0.01) than their breast-milk-fed counterparts. 3-to-6-month-olds fed low-CML-containing formulas presented lower total plasma CML levels (p<0.01), but similar insulin sensitivity compared to those on high-CML-containing formulas. Markers of oxidative stress and inflammation, levels of leptin and adhesion molecules did not differ significantly between the groups. Follow-up study: at initial investigation, the breast-milk-consuming infants displayed lower total plasma CML levels (p<0.01) and AGEs-associated fluorescence (p<0.05), but higher insulin sensitivity (p<0.05) than the formulas-consuming infants. At follow-up, the groups did not differ significantly in either determined parameter.

Conclusions

In healthy term infants, high dietary load with CML does not play a pathophysiological role in the induction of infant formula-associated insulin resistance. Whether a high load of AGEs in early childhood affects postnatal programming remains to be elucidated.  相似文献   

4.
Atypical protein kinase C (PKC) ζ is an important regulator of inflammation through activation of the nuclear factor-κB (NF-κB) pathway. Chromatin remodeling on pro-inflammatory genes plays a pivotal role in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced abnormal lung inflammation. However, the signaling mechanism whereby chromatin remodeling occurs in CS- and LPS-induced lung inflammation is not known. We hypothesized that PKCζ is an important regulator of chromatin remodeling, and down-regulation of PKCζ ameliorates lung inflammation by CS and LPS exposures. We determined the role and molecular mechanism of PKCζ in abnormal lung inflammatory response to CS and LPS exposures in PKCζ-deficient (PKCζ−/−) and wild-type mice. Lung inflammatory response was decreased in PKCζ−/− mice compared with WT mice exposed to CS and LPS. Moreover, inhibition of PKCζ by a specific pharmacological PKCζ inhibitor attenuated CS extract-, reactive aldehydes (present in CS)-, and LPS-mediated pro-inflammatory mediator release from macrophages. The mechanism underlying these findings is associated with decreased RelA/p65 phosphorylation (Ser311) and translocation of the RelA/p65 subunit of NF-κB into the nucleus. Furthermore, CS/reactive aldehydes and LPS exposures led to activation and translocation of PKCζ into the nucleus where it forms a complex with CREB-binding protein (CBP) and acetylated RelA/p65 causing histone phosphorylation and acetylation on promoters of pro-inflammatory genes. Taken together, these data suggest that PKCζ plays an important role in CS/aldehyde- and LPS-induced lung inflammation through acetylation of RelA/p65 and histone modifications via CBP. These data provide new insights into the molecular mechanisms underlying the pathogenesis of chronic inflammatory lung diseases.  相似文献   

5.

Background

We have shown that 1,2,3,4,6-penta-O-galloyl-α-D-glucopyranose (α-PGG), an orally effective hypoglycemic small molecule, binds to insulin receptors and activates insulin-mediated glucose transport. Insulin has been shown to bind to its receptors on platelets and inhibit platelet activation. In this study we tested our hypothesis that if insulin possesses anti-platelet properties then insulin mimetic small molecules should mimic antiplatelet actions of insulin.

Principal Findings

Incubation of human platelets with insulin or α-PGG induced phosphorylation of insulin receptors and IRS-1 and blocked ADP or collagen induced aggregation. Pre-treatment of platelets with α-PGG inhibited thrombin-induced release of P-selectin, secretion of ATP and aggregation. Addition of ADP or thrombin to platelets significantly decreased the basal cyclic AMP levels. Pre-incubation of platelets with α-PGG blocked ADP or thrombin induced decrease in platelet cyclic AMP levels but did not alter the basal or PGE1 induced increase in cAMP levels. Addition of α-PGG to platelets blocked agonist induced rise in platelet cytosolic calcium and phosphorylation of Akt. Administration of α-PGG (20 mg kg−1) to wild type mice blocked ex vivo platelet aggregation induced by ADP or collagen.

Conclusions

These data suggest that α-PGG inhibits platelet activation, at least in part, by inducing phosphorylation of insulin receptors leading to inhibition of agonist induced: (a) decrease in cyclic AMP; (b) rise in cytosolic calcium; and (c) phosphorylation of Akt. These findings taken together with our earlier reports that α-PGG mimics insulin signaling suggest that inhibition of platelet activation by α-PGG mimics antiplatelet actions of insulin.  相似文献   

6.
7.
Recent epidemiological data suggest that β-carotene may be protective against metabolic diseases in which adipose tissue plays a key role. Adipose tissue constitutes the major β-carotene storage tissue and its functions have been shown to be modulated in response to β-carotene breakdown products, especially retinal produced after cleavage by β-carotene 15,15′-monooxygenase (BCMO1), and retinoic acid arising from oxidation of retinal. However, the possibility exists that β-carotene in its intact form can also affect adipocyte function. Development of a knock out model and identification of a loss-of-function mutation have pointed out BCMO1 as being probably the sole enzyme responsible for provitamin A conversion into retinal in mammals. The utilisation of BCMO1−/−mice should provide insights on β-carotene effect on its own in the future. In humans, intervention studies have highlighted the huge interindividual variation of β-carotene conversion efficiency, possibly due to genetic polymorphisms, which might impact on response to β-carotene. This brief review discusses the processes involved in β-carotene conversion and the effect of cleavage products on body fat and adipose tissue function.  相似文献   

8.
Transgenic (UCP1-TG) mice with ectopic expression of UCP1 in skeletal muscle (SM) show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG) mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21) from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress induced by SM mitochondrial uncoupling.  相似文献   

9.
Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-κB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (γ-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-κB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-κB activation (e.g. in IκBα super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-κB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-κB activation, blocked TNFα- but not HDACI-mediated NF-κB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-κB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, γ-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-κB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-κB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.  相似文献   

10.
Apigenin, a natural plant flavonoid with antiproliferative activity, is emerging as a promising compound for cancer prevention and therapy, but its mechanism of action remains unclear. High expression of the small heat-shock protein-27 (Hsp27) in leukemia contributes to the resistance of these cells to cancer treatments. Changes in Hsp27 phosphorylation have been associated with heat and metabolic stress, but its role in flavonoid anticancer activity has not been investigated. In this study, we examined the effect of apigenin in the regulation of Hsp27 on leukemia. We showed that apigenin does not affect Hsp27 expression but induces a bimodal phosphorylation on Ser78 and Ser82. The phosphorylation at early times was regulated by p38. At later times, Hsp27 phosphorylation was dependent on p38 activity and for some residues on PKCδ. Silencing of p38 expression reduced apigenin-induced phosphorylation on Ser15, Ser78, and Ser82, whereas silencing of PKCδ expression reduced the phosphorylation on Ser15 and Ser82 without affecting Ser78. In addition, we found that apigenin-induced PKCδ activity is mediated by p38. We also showed that the phosphorylation of Hsp27 significantly increased the susceptibility of leukemia cells to apigenin-induced apoptosis. Together, these results identify a complex signaling network regulating the cytotoxic effect of apigenin through Hsp27 phosphorylation.  相似文献   

11.
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.  相似文献   

12.
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.  相似文献   

13.
从毛头鬼伞子实体中萃取得到乙醇、乙酸乙酯、石油醚3种有机提取物,采用α-葡萄糖苷酶活性抑制实验对3种有机提取物的抗糖尿病活性进行评价,结果显示,乙酸乙酯提取物对α-葡萄糖苷酶有较强的抑制活性。采用柱层析技术从乙酸乙酯提取物中分离纯化出10种化合物,经核磁等方法鉴定为:(1)顺,顺-9,12-十八(碳)二烯酸;(2)顺式-9-十八烯酸;(3)(22E,24R)-麦角甾烷-5,7,22-三烯-3β醇;(4)3β-5α-6α-22E-麦角甾-7,22-双烯-3,5,6-三醇-6-亚油酸酯;(5)3β-5α-6α-22E-麦角甾-7,22-双烯-3,5,6-三醇-6-油酸酯;(6)邻苯二甲酸二异丁酯;(7)对羟基苯乙醇;(8)4-羟基苯乙基乙酸酯;(9)3-(4-羟基-3-甲氧苯基)败脂酸;(10)N-反式-3,4亚甲二氧基肉桂酰基-3-甲氧基酪胺。对分离化合物的α-葡萄糖苷酶活性抑制实验结果显示,N-反式-3,4亚甲二氧基肉桂酰基-3-甲氧基酪胺对α-葡萄糖苷酶具有较强的抑制活性,其IC50值为4.17mg/mL。  相似文献   

14.
15.
16.
17.
18.
A novel peroxisome proliferator-activated receptor (PPAR) modulator, Z-551, having both PPARα agonistic and PPARγ antagonistic activities, has been developed for the treatment of obesity and obesity-related metabolic disorders. We examined the effects of Z-551 on obesity and the metabolic disorders in wild-type mice on the high-fat diet (HFD). In mice on the HFD, Z-551 significantly suppressed body weight gain and ameliorated insulin resistance and abnormal glucose and lipid metabolisms. Z-551 inhibited visceral fat mass gain and adipocyte hypertrophy, and reduced molecules involved in fatty acid uptake and synthesis, macrophage infiltration, and inflammation in adipose tissue. Z-551 increased molecules involved in fatty acid combustion, while reduced molecules associated with gluconeogenesis in the liver. Furthermore, Z-551 significantly reduced fasting plasma levels of glucose, triglyceride, free fatty acid, insulin, and leptin. To elucidate the significance of the PPAR combination, we examined the effects of Z-551 in PPARα-deficient mice and those of a synthetic PPARγ antagonist in wild-type mice on the HFD. Both drugs showed similar, but weaker effects on body weight, insulin resistance and specific events provoked in adipose tissue compared with those of Z-551 as described above, except for lack of effects on fasting plasma triglyceride and free fatty acid levels. These findings suggest that Z-551 ameliorates HFD-induced obesity, insulin resistance, and impairment of glucose and lipid metabolisms by PPARα agonistic and PPARγ antagonistic activities, and therefore, might be clinically useful for preventing or treating obesity and obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and dyslipidemia.  相似文献   

19.
20.
The β-N-acetylhexosaminidase (EC 3.2.1.52) from glycoside hydrolase family 20 (GH20) catalyzes the hydrolysis of the β-N-acetylglucosamine (NAG) group from the nonreducing end of various glycoconjugates. The putative surface-exposed N-acetylhexosaminidase StrH/Spr0057 from Streptococcus pneumoniae R6 was proved to contribute to the virulence by removal of β(1,2)-linked NAG on host defense molecules following the cleavage of sialic acid and galactose by neuraminidase and β-galactosidase, respectively. StrH is the only reported GH20 enzyme that contains a tandem repeat of two 53% sequence-identical catalytic domains (designated as GH20-1 and GH20-2, respectively). Here, we present the 2.1 Å crystal structure of the N-terminal domain of StrH (residues Glu-175 to Lys-642) complexed with NAG. It adopts an overall structure similar to other GH20 enzymes: a (β/α)8 TIM barrel with the active site residing at the center of the β-barrel convex side. The kinetic investigation using 4-nitrophenyl N-acetyl-β-d-glucosaminide as the substrate demonstrated that GH20-1 had an enzymatic activity (kcat/Km) of one-fourth compared with GH20-2. The lower activity of GH20-1 could be attributed to the substitution of active site Cys-469 of GH20-1 to the counterpart Tyr-903 of GH20-2. A complex model of NAGβ(1,2)Man at the active site of GH20-1 combined with activity assays of the corresponding site-directed mutants characterized two key residues Trp-443 and Tyr-482 at subsite +1 of GH20-1 (Trp-876 and Tyr-914 of GH20-2) that might determine the β(1,2) substrate specificity. Taken together, these findings shed light on the mechanism of catalytic specificity toward the β(1,2)-linked β-N-acetylglucosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号