首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative model was developed that identified a new function of noncoding sequences in the eukaryotic genome, namely, the protection of coding sequences against chemical (mainly endogenous) mutagens. It was shown that, under common ecological conditions, the number of nucleotides damaged by endogenous and exogenous reactive species in coding sequences of the genome is inversely proportional to the size of their noncoding parts. Noncoding sequences can differently protect single genetic loci from chemical modification by the formation of specific spatial structures of the protected loci in the interphase nuclei. The significant differences in genome sizes between species (C-value paradox) can be explained by different contributions of noncoding sequences to the total effect of genome protection from endogenous chemical mutagens.  相似文献   

2.
3.
The construction of a high-resolution genetic map of citrus would be of great value to breeders and to associate genomic regions with characteristics of agronomic interest. Here, we describe a novel high-resolution map of citrus using a population derived from a controlled cross between Citrus sunki (female parent) and Poncirus trifoliata (male parent). The genetic linkage maps were constructed using DArTseq markers and a pseudo-testcross strategy; only markers showing the expected segregation ratio were considered. To investigate synteny, all markers from both linkage maps were aligned with the genome of Citrus sinensis. The C. sunki map has a total of 2778 molecular markers and a size of 2446.6 cM, distributed across ten linkage groups. The map of P. trifoliata was built with 3084 markers distributed in a total of nine linkage groups, with a total size of 2411.6 cM. These maps are the most saturated linkage maps available for C. sunki and P. trifoliata and have high genomic coverage. We also demonstrated that the maps reported here are closely related to the reference genome of C. sinensis.  相似文献   

4.
The success of the invasive Asian shore crab, Hemigrapsus sanguineus, stems partly from its ability to exclude established crab species from preferred rocky and cobble intertidal habitat. Here, we assessed preference and competition for habitat types (cobble vs. sand) for H. sanguineus and two competitor species; the previous invasive green crab, Carcinus maenas, and the native rock crab, Cancer irroratus, in New England. In simple laboratory experiments, we paired similarly sized heterospecifics and conspecifics from each species, and also grouped combinations of C. maenas and H. sanguineus in a series of four-individual sets in order to dissect the outcome of intra- and inter-specific competition at different densities. Individually, all three species preferred cobble substrate. With paired conspecifics, H. sanguineus individuals would cohabitate in cobble, whereas C. maenas and C. irroratus individuals each excluded conspecifics from cobble. In heterospecific pairs, H. sanguineus excluded both C. maenas and C. irroratus from cobble. C. maenas and C. irroratus, were equally likely to exclude the other species, but rarely excluded H. sanguineus. In larger assemblages, H. sanguineus preferentially grouped under cobble, whereas C. maenas were more evenly distributed among habitat types. These observations demonstrate that conspecific tolerance and heterospecific competition can be effective, complementary mechanisms for overcoming invasion resistance. Such mechanisms help explain the well-studied success of H. sanguineus following its introduction into New England coastal habitats, and the resulting exclusion of preexisting crab species.  相似文献   

5.
Hemolytic factor production by pathogenic Candida species is considered an important attribute in promoting survival within the mammal host through the ability to assimilate iron from the hemoglobin-heme group. Hemolytic capability has been evaluated for Candida species based on hemolysis zones on plate assay, analysis of hemolytic activity in liquid culture medium, and hemolysis from cell-free culture broth. The production of hemolytic factor is variable among Candida species, where C. parapsilosis is the less hemolytic species. In general, no intraspecies differences in beta-hemolytic activities are found among isolates belonging to C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The production of hemolytic factor by Candida species is affected by several factors such as glucose supplementation in the culture medium, blood source, presence of erythrocytes and hemoglobin, and presence of electrolytes. On the basis of existing achievements, more researches are still needed in order to extend our knowledge about the biochemical nature of hemolytic molecules produced by distinct Candida species, the mechanism of hemolysis, and the molecular basis of the hemolytic factor expression.  相似文献   

6.
Limonium vulgare and related species form a complex group, but until now cytological and genetic studies have been based on single species and specific geographical areas. We investigated genome size, karyological and genetic diversity in samples from Western Mediterranean and evaluated the phylogenetic relationships among the species of this complex. Genome size was assessed using flow cytometry on samples from natural populations of L. vulgare, L. maritimum and L. narbonense. Chromosome counts were conducted in plants obtained from seeds collected in the field. The internal transcribed spacer ITS1 of the nuclear rDNAs was used to assess ITS polymorphisms as well as the phylogenetic relationships within the L. vulgare complex. Our analyses showed that all species were tetraploid, with the chromosome number of L. maritimum being presented here for the first time. Significant differences were observed in genome size, with L. narbonense having lower genome sizes than the other two species, and possible aneuploids being detected. Ten new ITS sequences from L. vulgare, L. narbonense and L. maritimum were provided. Most species’ populations showed unique ribotypes, and L. narbonense has the highest ribotype diversity. One of the L. maritimum populations presented a closer genetic relationship with L. vulgare, whereas the other two seemed to be more related with L. narbonense. Phylogenetic analyses confirmed that L. vulgare and L. narbonense form a monophyletic group, sister to the remaining Limonium species. Our results put into evidence that the studied species may represent a relatively early stage of divergence.  相似文献   

7.
2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate (MEC), an intermediate of the biosynthesis of isoprenoid compounds in bacteria, was found to be capable of exerting a resuscitating effect on resting Mycobacterium smegmatis cells. The introduction of an additional copy of the ispE gene encoding cytidyl-methyl-erythritol kinase, an enzyme involved in MEC synthesis in M. smegmatis, resulted in the emergence of a capacity for spontaneous reactivation of “nonculturable” M. smegmatis cells, which is not characteristic of the wild-type cells of this species. The involvement of MEC in the transition from the “nonculturable” state to the state of active growth is indicative of a previously unknown function of MEC, assumed to consist in regulation of the bacterial genome activity.  相似文献   

8.
Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila + N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance.  相似文献   

9.
The presence and extent of hybridization within the Chenopodium album aggregate (Amaranthaceae) is still unclear. Although many hybrid combinations have been described, their existence in the field has never been systematically studied and verified. The main aim of this study was to ascertain the extent of interspecific hybridization between the diploid species C. ficifolium and C. suecicum using highly variable nuclear microsatellite markers. Due to the absence of such kind of molecular markers for the whole C. album group, we divided the analysis into two steps: (1) Eleven microsatellite loci designed for the closely related species C. quinoa were cross-amplified in five Eurasian species of the C. album diploid–polyploid complex, i.e. C. album s.s. (6x), C. striatiforme (4x), C. strictum (4x), C. ficifolium (2x) and C. suecicum (2x); (2) For the detection of interspecific hybridization between C. ficifolium and C. suecicum, we sampled 480 individuals from five localities in Central Europe. We also investigated morphological differences between the parental taxa and their hybrid and devised a key for their determination. Analysis of variation in microsatellite loci using Bayesian methods, PCoA and Neighbour-joining tree identified 32 F1 hybrids. These F1 hybrids, described here as C. paradoxum Mandák, formed a cluster between well-differentiated parental species, combining the morphological characters of both their parents. Moreover, genetic analyses also recognized several F2 or backcross hybrids, whose delimitation, mainly from C. suecicum and F1 hybrids, based on morphological characters, is problematic.  相似文献   

10.

Background

The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea—the first for any goniomonad—to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily.

Results

We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~?92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida.

Conclusion

We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic “rewiring” that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae.
  相似文献   

11.
Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis.  相似文献   

12.
Prevotella is part of the oral bacterial community implicated in periodontitis. Pan genome analyses of eight oral Prevotella species, P. dentalis, P. enoeca, P. fusca, P. melaninogenica, P. denticola, P. intermedia 17, P. intermedia 17-2 and P. sp. oral taxon 299 are presented in this study. Analysis of the Prevotella pan genome revealed features such as secretion systems, resistance to oxidative stress and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems that enable the bacteria to adapt to the oral environment. We identified the presence of type VI secretion system (T6SS) in P. fusca and P. intermedia strains. For some VgrG and Hcp proteins which were not part of the core T6SS loci, we used gene neighborhood analysis and identified putative effector proteins and putative polyimmunity loci in P. fusca and polymorphic toxin systems in P. intermedia strains. Earlier studies have identified the presence of Por secretion system (PorSS) in P. gingivalis, P. melaninogenica and P. intermedia. We noted the presence of their homologs in six other oral Prevotella studied here. We suggest that in Prevotella, PorSS is used to secrete cysteine proteases such as interpain and C-terminal domain containing proteins with a “Por_secre_tail” domain. We identified subtype I-B CRISPR-Cas system in P. enoeca. Putative CRISPR-Cas system subtypes for 37 oral Prevotella and 30 non-oral Prevotella species were also predicted. Further, we performed a BLASTp search of the Prevotella proteins which are also conserved in the red-complex pathogens, against the human proteome to identify potential broad-spectrum drug targets. In summary, the use of a pan genome approach enabled identification of secretion systems and defense mechanisms in Prevotella that confer adaptation to the oral cavity.  相似文献   

13.

Background

Dictyostelid cellular slime molds (dictyostelids) are common inhabitants of the soil and leaf litter layer of fields and forests, along with animal dung, where they feed mostly on bacteria. However, reports on the species diversity of dictyostelids in South Asia, particularly Thailand, are limited. The research reported in this paper was carried out to increase our knowledge of the species diversity of this group of organisms in northern Thailand.

Results

Forty soil samples were collected at four localities in northern Thailand to assess the species richness of dictyostelids. These samples yielded five dictyostelid isolates that were not morphologically consistent with any described species. Based on molecular signatures, all five of these isolates were assigned to the family Cavenderiaceae, genus Cavenderia. All five share a number of morphological similarities with other known species from this family. The new taxa differ from previously described species primarily in the size and complexity of their fruiting bodies (sorocarps). This paper describes these new species (Cavenderia aureostabilis, C. bhumiboliana, C. protodigitata, C. pseudoaureostipes, and C. subdiscoidea) based on a combination of morphological characteristics and their phylogenetic positions.

Conclusions

At least 15 taxa of dictyostelids were obtained from the four localities in northern Thailand, which indicates the high level of species diversity in this region. Five species were found to be new to science. These belong to the family Cavenderiaceae, genus Cavenderia, and were described based on both morphology and phylogeny.
  相似文献   

14.
15.
Pseudoroegneria libanotica is an important herbage diploid species possessing the St genome. The St genome participates in the formation of nine perennial genera in Triticeae (Poaceae). The whole chloroplast (cp) genome of P. libanotica is 135 026 bp in length. The typical quadripartite structure consists of one large single copy of 80 634 bp, one small single copy of 12 766 bp and a pair of inverted regions (20 813 bp each). The cp genome contains 76 coding genes, four ribosomal RNA and 30 transfer RNA genes. Comparative sequence analysis suggested that: 1) the 737 bp deletion in the cp of P. libanotica was specific in Triticeae species and might transfer into its nuclear genome; 2) hot-spot regions, indels in intergenic regions and protein coding sequences mainly led to the length variation in Triticeae; 3) highly divergence regions combined with negative selection in rpl2, rps12, ccsA, rps8, ndhH, petD, ndhK, psbM, rps3, rps18, and ndhA were identified as effective molecular markers and could be considered in future phylogenetic studies of Triticeae species; and 4) ycf3 gene with rich cpSSRs was suitable for phylogeny analysis or could be used for DNA barcoding at low taxonomic levels. The cpSSRs distribution in the coding regions of diploid Triticeae species was shown for the first time and provided a valuable source for developing primers to study specific simple sequence repeat loci.  相似文献   

16.
The diploid oat species containing the A genome of two types (Al and Ac) were studied by electrophoresis of grain storage proteins (avenins), chromosome C-banding, and in situ hybridization with probes pTa71 and pTa794. The karyotypes of the studied species displayed similar C-banding patterns but differed in size and morphology of several chromosomes, presumably, resulting from structural rearrangements that took place during the divergence of A genomes from a common ancestor. In situ hybridization demonstrated an identical location of the 45S and 5S rRNA gene loci in Avena canariensis and A. longiglumis similar to that in the A. strigosa genome. However, the 5S rDNA locus in A. longiglumis (5S rDNA1) was considerably decreased in the chromosome 3Al long arm. The analysis demonstrated that these oat species were similar in the avenin component composition, although individual accessions differed in the electrophoretic mobilities of certain components. A considerable similarity of A. canariensis and A. longiglumis to the Avena diploid species carrying the As genome variant was demonstrated.  相似文献   

17.
Prunus fruticosa is a rare shrub occurring in Eurasian thermophilous forest-steppe alliances. The species frequently hybridizes with cultivated Prunus species in Europe (allochthonous tetraploid P. cerasus and partly indigenous diploid P. avium). Propidium iodide flow cytometry, distance-based morphometrics, elliptic Fourier analysis and embryology were employed to evaluate the extent of hybridization in six Slovak populations. Flow cytometric analyses revealed three ploidy levels: diploid (P. avium), triploid (P. × mohacsyana) and tetraploid (P. fruticosa, P. × eminens and P. cerasus). In addition, P. fruticosa and P. cerasus, at the tetraploid level, were found to differ in absolute genome size. An embryological evaluation suggested the existence of a triploid block in P. × mohacsyana and significant potential for hybridization among tetraploid taxa (indicated also by a continuous distribution of genome size data and further mirrored by morphometrics). Although hybrids significantly differ in ploidy level and embryological characteristics, they are almost indistinguishable using morphological characters. Hybridization with P. cerasus thus turns out to be a significant threat to wild populations of P. fruticosa compared to the relatively weak influence of P. avium.  相似文献   

18.
Previously, a very low level of divergence between the species of the genus Salamandrella—S. keyserlingii and S. schrenckii—was detected on the basis of variability of the nucleotide sequences of three genes of the nuclear genome (BDNF, POMC, and RAG1). Fixed interspecific differences were detected only in one nucleotide position of the RAG1 gene, and the level of interspecific divergence for this gene was only 0.07%. In this paper, we present the results of a study of the variability of the ENC1, MGAT4C, and RAG2 nuclear genes. The level of interspecific divergence for the MGAT4C gene was 0.14%, and for the RAG2 gene, it was 0.8%. The results of a phylogenetic analysis of the nucleotide sequences of the RAG2 gene in representatives of the family Hynobiidae indicate that the separation of the Salamandrella branch, which is basal for the genera Batrachuperus, Liua, Hynobius, and Pseudohynobius, occurred approximately 55 million years ago. The time of divergence between species of the Salamandrella genus was approximately 21 million years ago.  相似文献   

19.
Genome skimming was performed, using Illumina sequence reads, in order to obtain a detailed comparative picture of the repetitive component of the genome of Populus species. Read sets of seven Populus and two Salix species (as outgroups) were subjected to clustering using RepeatExplorer (Novák et al. BMC Bioinformatics 11:378 2010). The repetitive portion of the genome ranged from 33.8 in Populus nigra to 46.5% in Populus tremuloides. The large majority of repetitive sequences were long terminal repeat-retrotransposons. Gypsy elements were over-represented compared to Copia ones, with a mean ratio Gypsy to Copia of 6.7:1. Satellite DNAs showed a mean genome proportion of 2.2%. DNA transposons and ribosomal DNA showed genome proportions of 1.8 and 1.9%, respectively. The other repeat types accounted for less of 1% each. Long terminal repeat-retrotransposons were further characterized, identifying the lineage to which they belong and studying the proliferation times of each lineage in the different species. The most abundant lineage was Athila, which showed large differences among species. Concerning Copia lineages, similar transpositional profiles were observed among all the analysed species; by contrast, differences in transpositional peaks of Gypsy lineages were found. The genome proportions of repeats were compared in the seven species, and a phylogenetic tree was built, showing species separation according to the botanical section to which the species belongs, although significant differences could be found within sections, possibly related to the different geographical origin of the species. Overall, the data indicate that the repetitive component of the genome in the poplar genus is still rapidly evolving.  相似文献   

20.
The genome of Candida versatilis was sequenced to understand its characteristics in soy sauce fermentation. The genome size of C. versatilis was 9.7 Mb, the content of G + C was 39.74 %, scaffolds of N50 were 1,229,640 bp in length, containing 4711 gene. There were predicted 269 tRNA genes and 2201 proteins with clear function. Moreover, the genome information of C. versatilis was compared with another salt-tolerant yeast Zygosaccharomyces rouxii and the model organism Saccharomyces cerevisiae. C. versatilis and Z. rouxii genome size was close and both smaller than 12.1 for the Mb of S. cerevisiae. Using the OrthoMCL protein, three genomes were divided into 4663 groups. There were about 3326 homologous proteins in C. versatilis, Z. rouxii and S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号