首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serum concentration of circulating somatomedins was measured in the blood of healthy donors and subjects with hepatic cirrhosis, and in culture media from in vitro explants of healthy and cirrhotic human liver. Serum levels of somatomedin bioactivity were significantly lower in cirrhotic subjects (0.42 +/- 0.03 U/ml; M +/- SEM) compared with age matched controls (0.99 +/- 0.03 U/ml). Radioreceptor assay of somatomedin concentrations confirmed this reduction in cirrhotic patients (0.89 +/- 0.06 U/ml) compared with controls (1.32 +/- 0.05 U/ml). A parallel reduction in somatomedin circulating binding ability was also observed (99.43 +/- 7.28% in cirrhotic and 123.5% +/- 10.8% in normal subjects). In vitro explants from normal human liver tissue produced a significant increase (0.57 +/- 0.09 U/ml) in somatomedin bioactivity contained in the medium (0.29 +/- 0.06 U/ml), while a decreased bioactivity (0.12 +/- 0.06 U/ml) was observed with explants of cirrhotic livers. These results support a role of liver in the biosynthesis of both somatomedin and somatomedin binding protein.  相似文献   

2.
Hyaluronan (HA), a large glycosaminoglycan found in the ECM, has major roles in lung and vascular biology and disease. However, its role in idiopathic pulmonary arterial hypertension (IPAH) is unknown. We hypothesized that HA metabolism is abnormal in IPAH. We measured the plasma levels of HA in IPAH and healthy individuals. We also evaluated HA synthesis and the expression of HA synthases and hyaluronidases in pulmonary artery smooth muscle cells (PASMCs) from explanted lungs. Plasma HA levels were markedly elevated in IPAH compared with controls [HA (ng/ml, mean +/- SD): IPAH 325 +/- 80, control 28 +/- 9; P = 0.02]. In vitro, unstimulated IPAH PASMCs produced high levels of HA compared with control cells [HA in supernatant (microg/ml, mean +/- SD): IPAH 12 +/- 2, controls 6 +/- 0.9; P = 0.04]. HA levels were also higher in IPAH PASMC lysates. The increased HA was biologically relevant as shown by tissue staining and increased HA-specific binding of mononuclear cells to IPAH compared with control PASMCs [number of bound cells x 10(4) (mean +/- SD): IPAH 9.5 +/- 3, control 3.0 +/- 1; P = 0.01]. This binding was abrogated by the addition of hyaluronidase. HA synthase-2 and hyaluronidase-2 were predominant in control and IPAH PASMCs. Interestingly, the expressions of HA synthase-2 and hyaluronidase-2 were approximately 2-fold lower in IPAH compared with controls [HA synthase-2 (relative expression mean +/- SE): IPAH 4.3 +/- 0.02, control 7.8 +/- 0.1; P = 0.0004; hyaluronidase-2 (relative expression mean +/- SE): IPAH 4.2 +/- 0.06, control 7.6 +/- 0.07; P = 0.008]. Thus patients with IPAH have higher circulating levels of HA, and PASMCs derived from IPAH lungs produce more HA compared with controls. This is associated with increased tissue levels and increased binding of inflammatory cells suggesting a role for HA in remodeling and inflammation in IPAH.  相似文献   

3.
The ability of recombinant alpha 2-interferon (reaferon) to compete for opiate binding sites with mu- and delta-selective compounds was determined. Reaferon was found to inhibit the binding of 3H-D-ala2, D-leu5-enkephalin, and Ki value calculated was equal to 8.5 +/- 2.6 U.10(-3)/ml. The mu-agonists reception levels were decreased in the presence of reaferon at concentrations above 500 U/ml; the Ki values for 3H-morphine, 3H-dihydromorphine, 3H-RX 783006 were found to be 3.25 +/- 0.35, 4.28 +/- 0.81 and 6.51 +/- 1.27 U.10(-4)/ml, respectively. When reaferon was added into reaction medium at concentrations more than 5.10(3) U/ml the specific receptor binding of opiate antagonist 3H-naloxone was demonstrated to be increased and this effect was reversed with 100 mM NaCl. The existence of allosteric reaferon binding site which coupled with naloxone sensitive receptor was suggested to explain the results obtained.  相似文献   

4.
BACKGROUND: Platelet-activating factor (PAF) seems to be implicated in systemic lupus erythematosus (SLE) patients with associated renal diseases. AIMS: In this study, we ensured the role of PAF in SLE patients without renal complications. METHODS: Blood PAF and acetylhydrolase activity, plasma soluble phospholipase A(2), and the presence of antibodies against PAF were investigated in 17 SLE patients without active nephritis and in 17 healthy controls. RESULTS: Blood PAF levels were not different (p=0.45) between SLE patients (6.7+/-2.8 pg/ml) and healthy subjects (9.6+/-3.1 pg/ml). Plasma acetylhydrolase activity (the PAF-degrading enzyme) was significantly (p=0.03) elevated in SLE patients (57.8+/-6.4 nmol/min/ml) as compared with controls (37.9+/-2.6 nmol/min/ml). Plasma soluble phospholipase A(2) (the key enzyme for PAF formation) was not different (p=0.6) between SLE patients (59.1+/-5.1 U/ml) and controls (54.7+/-2.4 U/ml). Antibodies against PAF were detected only in 3/17 SLE patients. Flow cytometry analysis did not highlight PAF receptors on circulating leukocytes of SLE patients. CONCLUSION: This clinical study highlights no evidence for a putative important role of PAF in SLE patients without active nephritis.  相似文献   

5.
The preferential interactions of alpha-interferon (alpha-IFN) with delta and mu opiate receptors were studied. alpha-IFN (specific antiviral activity 2 X 10(3) U/mg protein) was shown to inhibit in the competitive manner 3H-naloxone and 3H-D-ala2, D-leu5-enkephalin (3H-DADL) specific binding to opiate receptor subpopulations. alpha-IFN was much more effective in decreasing 3H-DADL than 3H-naloxone binding in opiate receptors: K1 values averaged 160 +/- 30 and 1150 +/- 80 U/ml, respectively. IFN effective concentrations inhibiting 50% of 3H-naloxone opiate receptor binding in the absence or presence of 100 mmol/l NaCl were similar, and the "sodium shift" value was equal to 1. The independence of alpha-IFN activity of the presence of NA+ cations suggests the antagonist character of alpha-IFN interaction with opiate receptors. Thus, alpha-IFN employed appears to be an alpha-selective ligand displaying the in vitro properties of "pure" morphine antagonists.  相似文献   

6.
We produced antiserum to insulin-like growth factor I (IGF-I), and developed a specific and sensitive radioimmunoassay (RIA) for IGF-I using the biosynthetic IGF-I. This antiserum to IGF-I was specific for IGF-I; no cross-reactivities with multiplication stimulating activity, porcine insulin or human growth hormone (hGH) were detected. The sensitivity was 10-25 pg/tube with 50% displacement at 125 pg/tube. The intra- and inter-assay coefficients of variation for IGF-I were 5.4 and 9.7%, respectively. The plasma IGF-I levels as determined by RIA in normal adults (N = 46), patients with active acromegaly (N = 31), and pituitary dwarfs (N = 31) were 21.6 +/- 1.0, 157.3 +/- 17.0, and 2.5 +/- 0.3 ng/ml (Mean +/- SEM), respectively, indicating the levels were GH-dependent. The plasma IGF-I levels were significantly increased from 2.2 +/- 0.2 to 26.5 +/- 3.2 ng/ml after hGH administrations for three consecutive days in five pituitary dwarfs. The IGF-I levels were low in patients with hypothyroidism and liver cirrhosis, but were normal in patients with chronic renal failure. These data confirm previous reports and this radioimmunoassay proves useful in evaluating plasma IGF-I levels.  相似文献   

7.
We have determined optimal conditions for the solubilization of the basic somatomedin (SM) receptor from human placental membranes and for the measurement of the binding of basic SM to the solubilized receptor. Further, we have developed conditions under which the basic SM receptor, in the presence of equivalent amounts of insulin receptor, can be selectively and specifically affinity-labeled with 125I-labeled basic SM, using the cross-linking reagent disuccinimidyl suberate (DSS). Our results with these developed methods indicate that the properties of the soluble basic SM receptor (pH optimum for ligand binding, pH 7 to 9; adsorption to lectin-agarose derivatives; sedimentation coefficient in detergent-sucrose solutions, 11S) closely parallel data previously reported for the insulin receptor. Based on the sedimentation coefficient and the previously estimated Stokes radius of the soluble receptor (7.2 nm), a molecular weight of 402 000 can be calculated for the detergent-receptor complex. Electrophoretic analysis of the basic SM receptor, selectively cross-linked to 125I-labeled basic SM with DSS in the presence of excess unlabeled insulin revealed, under reducing conditions, a major labeled constituent of 140 kdaltons, substantiating our previous work employing a photoaffinity labeling reagent. DSS cross-linking also demonstrated the presence of less intensely labeled components with apparent molecular weights of 54 000, 43 000 and 35 000 but failed to reveal a distinct 90- to 100-kdalton species visualized in parallel experiments with insulin. The 53-kdalton species was not detected in similar experiments with insulin. A specifically labeled basic SM receptor component of 300 kdaltons was also observed under reducing conditions; in the absence of beta-mercaptoethanol, all labeled components migrated in the 300-kdalton range. In comparison, selective DSS labeling of the insulin receptor in the presence of excess basic SM revealed components which, upon electrophoresis under reducing conditions, exhibited apparent molecular weights of 300 000, 140 000, 90 000--100 000, 43 000 and 35 000. The major insulin-labeled component (140 000) comigrated with the major constituent (140 000) selectively labeled with basic SM. Chymotryptic digestion of the receptors selectively DSS labeled with either 125I-labeled insulin or 125I-labeled basic SM yielded quite similar, but distinctive, gel electrophoretic maps. We conclude that the receptors for basic SM and insulin are highly homologous structures, particularly with respect to their glycoprotein nature, their hydrodynamic properties, their disulphide cross-linked composition, and with respect to the size of the major constituent detected by selective affinity labeling. Nonetheless, the detection of electrophoretically distinct labeled receptor substituents upon analysis of specifically labeled material, both before and after chymotryptic cleavage, points to subtle differences between the polypeptide compositions of the two receptors.  相似文献   

8.
Recombinant E. coli-derived murine IFN-gamma (Mu-rIFN-gamma; 5 X 10(7) U/mg) was radiolabeled with 125I by the chloramine-T method without loss of its antiviral activity. The 125I-Mu-rIFN-gamma showed specific binding to L1210 cells. Scatchard analysis indicates about 4000 binding sites per cell and an apparent Kd of 5 X 10(-10)M. Binding of 125I-Mu-rIFN-gamma to cells was inhibited by both natural (glycosylated) and rIFN-gamma, but not by IFN-alpha/beta. Receptor-bound 125I-Mu-rIFN-gamma was rapidly internalized when incubation temperature was raised from 4 degrees C to 37 degrees C. On internalization, almost no IFN-gamma degradation was observed during 16 hr incubation. 125I-Mu-rIFN-gamma binding capacity decreased in cells preincubated with low doses of unlabeled Mu-rIFN-gamma, but not with IFN-alpha/beta. This receptor down-regulation was dose-dependent: 90% reduction of 125I-Mu-rIFN-gamma binding was observed after preincubation with 100 U/ml. After removal of IFN-gamma from the culture medium, the binding capacity increased with time. However, reappearance of receptor was completely blocked by cycloheximide or tunicamycin, suggesting that re-expression of receptors is not due to recycling but to the synthesis of new receptors, and that the receptor is probably a glycoprotein. Cross-linking of 125I-Mu-rIFN-gamma to surface L1210 cell proteins by using bifunctional agents yielded a predominant complex of m.w. 110,000 +/- 5000. Thus, assuming a bimolecular complex, the m.w. of the receptor or receptor subunit would be close to 95,000 +/- 5000. The formation of such a complex appeared highly specific on the basis of the following criteria: it could be inhibited by the addition of Mu-rIFN-gamma but not by Mu-rIFN-alpha/beta, it was not obtained in cells pretreated with IFN-gamma to induce down-regulation of IFN-gamma receptors, and it was also identified in the IFN-alpha/beta-resistant L1210R cell line, known to be sensitive to IFN-gamma and which we have recently shown to express IFN-gamma receptors.  相似文献   

9.
Variables controlling somatomedin production by cultured human fibroblasts   总被引:13,自引:0,他引:13  
Somatomedin is secreted by multiple types of cultured cells including human fibroblasts. Since the control of somatomedin (Sm) production by fibroblasts may be an important regulatory step in cell division, we undertook studies to define the variables in tissue culture experimental design that may have significant effects on the secretion of Sm. Cell density was an important parameter in determining basal Sm production rates. Cultures plated at 2.5 X 10(4) cells/well produced 0.38 +/- 0.06 U/ml/10(5) cells whereas an increase in culture density to 6.2 X 10(4) cells/well was associated with a decrease in Sm production per cell to 0.23 +/- 0.04 U/ml/10(5) cells (P less than .01). Cultures stimulated by platelet-derived growth factor (PDGF) showed a similar reduction in Sm production with increasing cell density. Epidermal growth factor was stimulatory (5.4-fold increase) in low-density cultures but had no effect when high-density cultures were used. If the experiments were initiated between 2 and 4 days after the last media change there were no significant differences in basal or PDGF-stimulated Sm concentrations. Between days 5 and 9 however, there was a progressive increase in the basal Sm production rate. The duration of incubation was an important variable since Sm production increased during the first 12 h in noncycling cells and showed an accelerated increase between 4 and 8 h in cycling cells. Cells between the eighth and 12th passage had similar basal Sm production (0.22 +/- 0.04 U/ml/10(5) cells) rates; cells between the 19th and 20th passages had significantly higher basal Sm production rates (0.41 +/- 0.05 U/ml/10(5) cells) (P less than .01). These results suggest that several variables, particularly cell density and passage number, are critical variables when quantitating the effect of hormones and growth factors on Sm production by cultured fibroblasts.  相似文献   

10.
Regulation of platelet-activating factor receptors in rat Kupffer cells   总被引:1,自引:0,他引:1  
Ligand binding studies indicate that 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) down-regulates its own receptors on the plasma membrane of isolated rat Kupffer cells but has no significant effect on the binding affinity of the receptor for AGEPC. Exposure of isolated rat Kupffer cells to 10(-8) and 10(-6) M AGEPC resulted in a rapid, time-dependent reduction in the number of cell surface AGEPC receptors to a new steady state concentration (54.1 +/- 5.0% and 38.6 +/- 5.4% of control, respectively). During the observation period (6 h), the half-time of surface AGEPC receptors was about 60 and 45 min in the presence of 10(-8) and 10(-6) M AGEPC, respectively. Both the rate of loss and the maximal loss of the receptors were dependent upon the AGEPC concentration. With receptor synthesis inhibited by cycloheximide in the absence of AGEPC, the half-time of the surface AGEPC receptor was about 4 h, suggesting that AGEPC receptors are not recycled and that the loss of AGEPC receptors from the plasma membrane is accelerated by AGEPC binding. When incubated with Kupffer cells at 37 degrees C for 3 h, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (1.0 microM), an inactive metabolite of AGEPC, did not cause the loss of AGEPC receptors. Under the same conditions, AGEPC antagonists such as BN52021 (2 x 10(-5) M) or U66985 (2 x 10(-5) M) alone had no effect (97.0 +/- 3.9% of control for BN52021) or only a relatively slight effect (78.4 +/- 1.8% for U66985) on the number of surface AGEPC receptors. However, AGEPC antagonists inhibited the AGEPC-induced down-regulation of AGEPC receptors in a concentration-dependent manner, suggesting that the AGEPC-induced down-regulation of AGEPC receptors is a receptor-mediated process. The AGEPC-mediated decrease in receptor number on rat Kupffer cells is reversible. Upon removing AGEPC from the culture medium, about 67% of the lost receptors were replaced within 2 h. Cycloheximide, an inhibitor of protein synthesis, prevented the restoration of the AGEPC receptors. Similar results were obtained when Kupffer cells were incubated with Pronase followed by removing Pronase and reincubating the cells with or without cycloheximide. These observations suggest that the restored AGEPC receptor is newly synthesized rather than recycled. The present study demonstrates that under non-stimulatory (i.e. in the absence of AGEPC) conditions AGEPC receptors are lost from the plasma membrane and are reformed in the cells continuously.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Benzodiazepine receptors on human blood platelets   总被引:3,自引:0,他引:3  
Binding studies conducted on membrane preparation from human platelets using (3H) Ro5-4864 and (3H) diazepam showed specific and saturable binding. Scatchard analysis revealed a single class of binding sites with KD = 10.8 +/- 0.9 nM and Bmax = 775 +/- 105 fmol/mg protein for (3H) Ro5-4864 and KD = 10.5 +/- 1.1 nM and Bmax = 133 +/- 19 fmol/mg for (3H) diazepam. We were unable to detect any GABA binding site on crude membrane preparation, nor did GABA enhance the binding of (3H) Ro5-4864 or (3H) diazepam. This suggests that benzodiazepine receptors are uncoupled to GABA system on human platelets. Ro15-1788, a specific antagonist for "central type" benzodiazepine (BDZ) binding sites was inactive in displacing (3H) Ro5-4864 from membrane receptors, while PK 11195 (a specific ligand for the "peripheral type" receptor) was the most potent of the drugs tested in inhibiting (3H) Ro5-4864 binding. These results indicate that human blood platelets bear "peripheral-type" BDZ receptor. Moreover, we could not detect any (3H) propyl beta carboline specific binding on platelet membranes. Results on benzodiazepine receptors on human circulating lymphocytes are also reported and similarity in pharmacological properties with platelet benzodiazepine receptors is suggested.  相似文献   

12.
125I-Insulin binding to isolated brain microvessels from control, streptozotocin diabetic, and insulin-treated diabetic rats was measured. The binding was highest in the control (21.1 +/- 1.8%/mg capillary protein) and lowest in the diabetic (14.8 +/- 1.9%, p less than 0.01) animals. Administration of 2 U of protamine zinc insulin per day increased the maximum binding in the diabetic rats to 17.2 +/- 2.1%. Scatchard analyses of the binding showed that the major difference between the diabetic and the control animals was a decrease in the number of both high- and low-affinity sites in the diabetic animals. To test whether the failure of up-regulation in the hypoinsulinemic diabetic animal was related to an inherent defect in the endothelial cell or resulted from the diabetic milieu, cultured brain endothelial cells were tested for their capacity to up- and down-regulate their insulin receptors in vitro. In response to 100 ng/ml insulin for 12 h, these cells down-regulated their insulin receptors. When the insulin was removed, the insulin receptors returned to control levels. These studies showed that in vitro brain capillary endothelial cells have the capacity to increase their insulin receptors in response to a low-insulin environment, whereas in vivo the microvessels decrease their insulin receptors in response to diabetes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of maximal exercise on lymphocyte beta-adrenergic receptors was examined in 26 normal subjects. Exercise increased O2 consumption (Vo2) from 5 +/- 1 to 50 +/- 4 ml.min-1.kg-1, plasma norepinephrine level from 188 +/- 28 to 2,682 +/- 160 pg/ml, and plasma epinephrine level from 94 +/- 72 to 857 +/- 180 pg/ml. The density of beta-adrenergic receptors on lymphocytes obtained at rest was 31 +/- 3.7 fmol/mg protein; exercise increased the density of receptors by 86 +/- 33% (range 0-257%) to 58.3 +/- 1.5 fmol/mg protein but did not alter the affinity of the receptor for [125I]iodopindolol or the coupling of the receptor to the guanine nucleotide-binding regulatory protein. The density of beta-adrenergic receptors increased progressively throughout exercise and paralleled the increase in heart rate. The magnitude of the change in the density of beta-adrenergic receptors did not correlate with the magnitude of the increase in heart rate, Vo2, or plasma levels of catecholamines. The density of receptors was still elevated 15 min after completion of exercise but fell below base line 1 h after peak exercise to 18.2 +/- 6.7 fmol/mg protein (P less than 0.05 vs. base-line levels). These results demonstrate that exhaustive exercise results in a progressive increase in the number of beta-adrenergic receptors on lymphocyte membranes, followed by a reduction in the density of receptors during the recovery phase of exercise. Despite a significant increase in the level of plasma catecholamines, the receptor remains coupled to the guanine nucleotide-binding regulatory protein.  相似文献   

14.
In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.  相似文献   

15.
Exposure to IFN-gamma increases the respiratory burst of polymorphonuclear leukocytes stimulated by the chemoattractant FMLP. However, the mechanism by which IFN-gamma alters the response to FMLP is unclear. We addressed the hypothesis that IFN-gamma enhances the response to FMLP by regulating the expression of elements of the formyl peptide receptor transmembrane-signaling pathway. HL-60 granulocytes were used as a model of FMLP transmembrane signaling. Formyl peptide receptor number and affinity were studied in isolated plasma membranes prepared from control HL-60 cells (CM) and cells exposed to IFN-gamma 100 U/ml for 24 h (IFN-M). Formyl peptide receptors were significantly increased on IFN-M compared with CM (1473 +/- 300 vs 3209 +/- 924). FMLP stimulates increased guanine nucleotide-binding protein (G protein) activation in IFN-M as evidenced by enhanced guanosine 5'-[gamma-thio]triphosphate binding and GTPase activity. Gi sub-unit content was increased in IFN-M as measured by pertussis toxin-catalyzed ADP-ribosylation and immunoblotting with antibodies against alpha i2 and alpha i3 G protein subunits. Guanosine 5'-[gamma-thio]triphosphate equilibrium binding demonstrated an increased number of G proteins coupled to formyl peptide receptors on IFN-M. We conclude that IFN-gamma increases expression of both formyl peptide receptors and G proteins coupled to these receptors, thereby enhancing FMLP-stimulated transmembrane signaling. Regulation of transmembrane signaling element expression may be a significant mechanism by which IFN-gamma regulates cellular functions.  相似文献   

16.
Abstract

We have examined the presence and properties of specific receptors for IGF-I on bovine mononuclear cells. Competitive binding studies showed that binding of [125I]IGF-I to mononuclear cells was inhibited by unlabelled peptides with the rank of IGF-I > IGF-II > insulin. The binding of [125I]IGF-I was a function of the cell concentration. Equilibrium dissociation constant and receptor concentration values for the average of 9 adult cows were 1.13 ± 0.11 nM and 108.9 ± 24.1 fMol/107 cells, respectively. Moreover, IGF-I stimulated thymidine incorporation into bovine mononuclear cells in the absence of serum and phytohemagglutinin (PHA). The existence of specific and functional IGF-I receptors on circulating bovine mononuclear cells would provide an easily accessible source for studying IGF-I receptor changes in the bovine, both in physiologic and pathologic states.  相似文献   

17.
The effect of insulinhypoglycemia and arginine infusion on circulating concentrations of plasma growth hormone-releasing hormone (GHRH) and growth hormone (GH) has been studied in 24 children (4.4 to 14.3 years). Plasma GH and GHRH concentrations were determined by RIA. Basal plasma GHRH levels were detectable in the plasma of all patients ranging from 6.8 to 27.1 pg/ml. Injection of 0.1 U/kg body wt. insulin i.v. resulted in an increase of plasma GHRH levels (11.1 +/- 1.4 pg/ml vs. 18.8 +/- 2.6 pg/ml; P less than 0.01) preceding that of plasma GH (1.5 +/- 0.4 ng/ml vs. 13.6 +/- 1.3 ng/ml; P less than 0.01). Infusion of 0.5 gm/kg body wt. arginine hydrochloride did increase GH concentrations (2.0 +/- 0.6 ng/ml vs. 13.9 +/- 2.3 ng/ml; P less than 0.01) but did not change circulating plasma GHRH levels. Since the source of peripheral GHRH concentrations is not known the importance of these findings remains to be determined.  相似文献   

18.
Erythrocyte insulin-like growth factor I (IGF-I) and insulin receptors were characterized in 10 normal prepubertal children (5 girls and 5 boys) aged 4-11 yrs and 10 normal adults (4 women and 6 men) aged 32-47 yrs. erythrocytes were purified from 5 ml of blood by Ficoll-Paque gradient centrifugation. Reticulocytes count in the erythrocyte suspensions were lower than 1%. Insulin and IGF-I binding assays were performed simultaneously. Maximal percent binding of [125I] labelled IGF-I was significantly higher in prepubertal children than in adults (8.7 +/- 0.7% versus 6.2 +/- 0.5% at a concentration of 5 x 10(9) erythrocytes/ml). Scatchard analysis revealed the high affinity constant was better in prepubertal children (Ka = 4.6 +/- 1.3 nM-1 versus 1.8 +/- 0.2 nM-1), whereas the binding capacity was similar (5.8 +/- 1.1 versus 7.7 +/- 0.8 high affinity binding sites/cell). In both groups, unlabelled IGF-I inhibited tracer-binding half maximally at about 1 nM. Insulin was 100-fold less potent. In adults, specific binding of [125I] labelled IGF-I was higher in women (7.6 +/- 0.7%) than in men (5.3 +/- 0.4%). No significant difference was observed in maximal specific binding of [125I] labelled insulin between prepubertal children (8.2 +/- 0.5%) and adults (7.2 +/- 0.7%). In both groups, competition by unlabelled insulin for [125I] labelled insulin binding gave 50% displacement for approximately 0.25 nM and IGF-I was about 80-fold less potent. Both IGF-I and insulin binding parameters were not significantly correlated with plasma hormone levels. In prepubertal children, the high-affinity IGF-I receptors number decreased with increasing high-affinity insulin receptors number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Poor growth in diabetes involves low circulating levels of somatomedins/insulin-like growth factors (IGFs), largely reflecting decreased growth factor release by the liver. To define regulatory mechanisms, circulating IGF-1 was compared with levels of a high mol wt putative hepatic IGF-1 precursor and hepatic IGF-1 mRNA in a model of progressive severity of diabetes in rats. Streptozotocin administered at 36, 72, 144, and 288 mg/kg produced graded metabolic decompensation 2 days later, from minimal hyperglycemia with continued weight gain at 36 mg/kg, to marked hyperglycemia, ketonemia, and weight loss at 288 mg/kg (all P less than 0.001). Total serum IGF-1 measured by RIA was unchanged with the 36 and 72 mg/kg doses of streptozotocin (471 +/- 19 and 439 +/- 27 ng/ml, respectively, vs. 517 +/- 27 ng/ml in controls) despite serum glucose greater than 400 mg/dl. With streptozotocin 144 and 288 mg/kg, serum IGF-1 fell to 131 +/- 27 and 142 +/- 10 ng/ml, respectively (both P less than 0.005 vs. controls). Serum IGF-1 was correlated strongly with serum beta-hydroxybutyrate and body weight (r = -0.88 and 0.91, respectively, P less than 0.0001), and less strongly with serum glucose (r = -0.59, P less than 0.0002). Extractable hepatic content of a high mol wt form of immunoreactive IGF-1 (a putative precursor) was unchanged at the two lowest doses of streptozotocin (68 +/- 4 and 83 +/- 9 ngeq/g vs. 67 +/- 4 in controls), but decreased to 16 +/- 3 and 29 +/- 4 ng/g at the two highest doses (both P less than 0.001 vs. controls).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have reported a paradoxical plasma atrial natriuretic factor (ANF) decline following prolonged high salt intake that was attributed to an increased tissue uptake of circulating ANF, leading to its augmented distribution volume (Vas) and metabolic clearance rate (MCR) as compared with control rats on a standard diet. To explore this phenomenon further, we evaluated possible chronic salt-loading-induced changes in ANF clearance (C-ANF) receptors, which appear to play a major role in ANF removal from the circulation. We studied changes in plasma [125I]ANF(1-28) and its pharmacokinetics after preoccupation of C-ANF receptors by its specific ligand, C-ANF(4-23), in high-salt-treated rats and their controls. Following C-ANF(4-23) administration, we detected significantly higher circulating [125I]ANF levels throughout the study period (8 min) in high-salt-fed rats compared with the controls (280-470% vs 100-215% increase of basal values, P less than 0.05). C-ANF(4-23) infusion caused a significantly greater decrease of the metabolic clearance rate and distribution volume of [125I]ANF in high-salt-fed rats than in control animals (74 +/- 6% vs 41 +/- 6% and 75 +/- 4% vs 50 +/- 5% of basal values, respectively; P less than 0.05). These data suggest that a prolonged high salt diet may increase the availability of C-ANF receptors and, through this mechanism, may negatively modulate plasma ANF concentrations. C-ANF receptors may thus fulfill a regulatory function on circulating ANF during prolonged salt loading in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号