首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to examine the secretion of biliary components in rats during infusion of increasing doses of either deoxycholic acid, chenodeoxycholic acid or cholic acid and to test the hypothesis that biliary phospholipids may regulate the hepatic bile acid secretory capacity. Analysis of bile samples, collected every 10 min throughout the infusion period showed that there was an elevation of bile acid, phospholipid, cholesterol and alkaline-phosphodiesterase secretion, with all the bile acids, peaking and then gradually declining. Their secretory rates maximum differed and were inversely related to their detergent strength. However, the secretory rates maximum and total output of phospholipids and cholesterol were similar for all bile acids infused. The per cent contribution of phosphatidylcholine to total bile acid-dependent phospholipid secretion was reduced from 84% (in the pre-infusion period) to 59, 46 and 13% at the end of the cholic acid, chenodeoxycholic acid and deoxycholic acid infusions, respectively. This decrease in the per cent contribution of phosphatidylcholine was associated with an increase in the contribution of both sphingomyelin and phosphatidylethanolamine. The biliary phospholipid fatty acid pattern corroborated these changes in the phospholipid classes. Since sphingomyelin and phosphatidylethanolamine are major phospholipids in bile canalicular and other hepatocellular membranes, the marked increase in their secretion in bile during the infusion of high doses of bile acids may indicate solubilization of membrane phospholipids, resulting in membrane structural changes responsible for the reduced excretory function of the liver.  相似文献   

2.
The aim of the present study was to determine whether bile acid feeding to rats can reverse ethinyl estradiol-induced cholestasis. Animals received ethinyl estradiol (2 mg/kg/day) for 6 days or were coinfused with estrogen plus various bile acids (60 mg/kg/day). Cholestasis could be significantly prevented by tauroursodeoxycholic acid, was partly corrected by ursodeoxycholic acid, and was unchanged by chenodeoxycholic acid. Total bile salt secretion was increased in every group. The secretion of the major primary bile acids (cholic acid and beta-muricholic acid) was restored to a large extent in rats supplemented with tauroursodeoxycholate but not in chenodeoxycholate-fed rats. In the former group, the canalicular transport of taurocholate and the bile salt pool size were identical with those of control rats. The hydrophilic-hydrophobic balance of the administered bile salt species appears to be an essential factor in the restoration of bile secretion, the more hydrophilic bile salt having the more hepatoprotective effect.  相似文献   

3.
The effects of 10 differently structured bile acids on bile flow and composition were studied in anesthetized, bile duct-cannulated guinea pigs. At the infusion rates of 2 and 4 mumole/min/kg, all bile acids produced choleresis. The most potent was chenodeoxycholate, which increased bile flow by an average of 31.25 microliters/mumole of bile acids excreted in bile. The weakest choleretic was tauroursodeoxycholate (11.02 mu/mumole). When the choleretic activity was plotted against bile acid hydrophobicity (high-performance liquid chromatography retention factor, obtained from the literature), linearity was observed with similarly conjugated bile acids. The order of potency was deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate, both for the glycine and taurine conjugates, and for the unconjugated bile acids as well. Conjugation was also important, and the rank ordering for the choleretic activity (unconjugated bile acids greater than glycine-conjugates greater than taurine-conjugates) was the same as that for the hydrophobicity. When the choleretic activity was plotted against bile acid micellar aggregation number (in 0.15 M NaCl at 36 degrees C, obtained from the literature), a linear, direct relationship was observed. All bile acids produced similar effects on bile electrolyte concentrations: both bicarbonate and chloride slightly declined during choleresis, whereas bile acid concentrations increased. These studies suggest that, in the guinea pig the differing choleretic activities of differently structured bile acids are not due to their forming micelles in bile of different sizes; either the more hydrophobic bile acids form vesicles, whereas the more hydrophilic form micelles; or bile acids produce choleresis, in part or exclusively, by stimulating an additional secretory mechanism, possibly an inorganic ion pump; or both.  相似文献   

4.
Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTalpha/OSTbeta. Although the transport function of OSTalpha/OSTbeta has been characterized, little is known about the regulation of its expression. We show here that human OSTalpha/OSTbeta expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTalpha and OSTbeta in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTalpha or OSTbeta promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTalpha gene and one in the OSTbeta gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTalpha/OSTbeta complex are induced by bile acids and FXR. By coordinated control of OSTalpha/OSTbeta expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.  相似文献   

5.
Aminopeptidase M [EC 3.4.11.2] was purified 772-fold to homogeneity from the microsomal fraction of human liver, with a yield of 18.9%, by a combination of solubilization with 0.5% Triton X-100 and then 1 M urea and chromatography on columns of DEAE-cellulose, hydroxylapatite, Butyl-Toyopearl, and Sephacryl S-300. The purified enzyme had a molecular weight of 140,000 by SDS-polyacrylamide gel electrophoresis and of 280,000 by gel filtration on a column of TSK gel 2000 SW. It was reconstituted into proteoliposomes with asolectin, showing its amphiphilic nature. The aminopeptidase M from liver was found to be efficiently inhibited by bile acids. The enzyme was almost completely inhibited by chenodeoxycholic acid and 70-90% inhibited by cholic acid at a concentration of 6 mM. The extent of inhibition by conjugated and unconjugated bile acids was in the order: unconjugated greater than glycoconjugated greater than tauroconjugated bile acid, independent of the nature of the substrates used. The inhibition by the various bile acids was totally reversible. Further, it was immunochemically revealed that a considerable amount of liver aminopeptidase M was released into the bile duct. The role of the aminopeptidase M on the bile canalicular membrane and of the enzyme released in the bile duct is discussed in relation to the effects of bile acids.  相似文献   

6.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   

7.
Summary In short-term cultures of rat hepatocytes, bile canaliculi enclosed between unseparated cell couplets are able to perform periodical contractions resulting in expulsion of bile. Pericanalicular cytoskeletal proteins are involved in canalicular contractility: F-actin, myosin and tropomyosin are associated around bile canaliculi, as revealed by staining with tetramethylrhodaminyl-phalloidin and by immunofluorescence. Bile canalicular contractility is distributed by cholestatic agents that are known to interfere with actin polymerization; e.g., phalloidin and also cytochalasin B inhibit canalicular contractility and cause pericanalicular vacuolization and formation of blebs. Whereas the association of the cytoskeletal proteins is not affected by treatment with cytochalasin B, treatment with phalloidin results in dissociation of F-actin and myosin, indicating that binding of phalloidin to F-actin impairs its molecular interaction with myosin.  相似文献   

8.
The in vivo conversion of several 5 beta-cholestane intermediates to primary bile acids was investigated in three patients with total biliary diversion. The following compounds were administered intravenously: 5 beta-[G-3H]-cholestane-3 alpha, 7 alpha-diol, 5 beta-[G-3H]cholestane-3 alpha, 7alpha, 26-triol, and 5 beta-[24-14C]cholestane-3 alpha, 7 alpha-25-triol. Bile was then collected quantitatively at frequent intervals for the next 21 to 28 h. The administered 5 beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol was found to be efficiently converted to cholic and chenodeoxycholic acids in two patients; 61 and 75% of the administered label was found in primary bile acids. The proportion of labeled cholic to chenodeoxycholic acid was 1.20 and 1.02 in the bile of these patients, indicating that the C-26 triol was efficiently converted to cholic acid. The ratio of cholic to chenodeoxycholic acid (mass) in the bile of these patients was 1.23 and 2.32. The 5 beta-cholestane-3alpha, 7alpha-diol intermediate was also efficiently converted (71%) to both primary bile acids. The cholic to chenodeoxycholic acid ratios by mass and label were similar (2.97 versus 2.23). By contrast, the 5beta-cholestane-3alpha, 7alpha, 25-triol was poorly converted to bile acids in three patients. Following the administration of this compound almost all of the administered radioactivity found in the bile acid fraction was in cholic acid (5 to 19%) and very little (less than 5%) was found in chenodeoxycholic acid. These findings indicate that ring hydroxylation at position 12 is not materially hindered by the presence of a hydroxyl group on the side chain at C-26 in patients with biliary diversion. The labeled C-26-triol which was efficiently converted to both primary bile acids in a proportion similar to that which was observed for the bile acids synthesized by the liver suggests that this 5beta-cholestane derivative may be a major intermediate in the synthesis of both cholic and chenodeoxycholic acids.  相似文献   

9.
The isolated perfused rat liver was used to examine the hepatic extraction, biliary secretion and effect on bile flow of the 2-fluoro-beta-alanine conjugates of cholic acid and chenodeoxycholic acid. The naturally occurring taurine and glycine conjugates of these bile acids were used for comparisons. The 2-fluoro-beta-alanine conjugates were extracted by the liver to a similar extent as the taurine and glycine conjugates. The biliary secretion rate and increase in bile flow were similar for all the cholic acid conjugates. On the other hand, the maximal biliary secretion rate of the 2-fluoro-beta-alanine conjugate of chenodeoxycholate was similar to that of the glycochenodeoxycholate, but 47% lower than that of taurochenodeoxycholate. In addition, the 2-fluoro-beta-alanine conjugate of chenodeoxycholate produced a decrease in bile flow that was comparable to that observed with the glycochenodeoxycholate (54% vs. 74%), but which was greater than that produced by the taurochenodeoxycholate (12%). In summary, these data demonstrate that the biological properties of the 2-fluoro-beta-alanine conjugates of cholic acid and chenodeoxycholic acid are not markedly different from those of the naturally occurring taurine and glycine conjugates. These data also suggest that the amino acid moiety can influence the biliary secretion and cholestatic properties of chenodeoxycholic acid conjugates.  相似文献   

10.
Cholestasis is a significant contributor to liver pathology and can lead to primary sclerosis and liver failure. Cholestatic bile acids induce apoptosis and necrosis in hepatocytes but these effects can be partially alleviated by the pharmacological application of choleretic bile acids. These actions of bile acids on hepatocytes require changes in the release of Ca(2+) from intracellular stores and in Ca(2+) entry. However, the nature of the Ca(2+) entry pathway affected is not known. We show here using whole cell patch clamp experiments with H4-IIE liver cells that taurodeoxycholic acid (TDCA) and other choleretic bile acids reversibly activate an inwardly-rectifying current with characteristics similar to those of store-operated Ca(2+) channels (SOCs), while lithocholic acid (LCA) and other cholestatic bile acids inhibit SOCs. The activation of Ca(2+) entry was observed upon direct addition of the bile acid to the incubation medium, whereas the inhibition of SOCs required a 12 h pre-incubation. In cells loaded with fura-2, choleretic bile acids activated a Gd(3+)-inhibitable Ca(2+) entry, while cholestatic bile acids inhibited the release of Ca(2+) from intracellular stores and Ca(2+) entry induced by 2,5-di-(tert-butyl)-1,4-benzohydro-quinone (DBHQ). TDCA and LCA each caused a reversible redistribution of stromal interaction molecule 1 (STIM1, the endoplasmic reticulum Ca(2+) sensor required for the activation of Ca(2+) release-activated Ca(2+) channels and some other SOCs) to puncta, similar to that induced by thapsigargin. Knockdown of Stim1 using siRNA caused substantial inhibition of Ca(2+)-entry activated by choleretic bile acids. It is concluded that choleretic and cholestatic bile acids activate and inhibit, respectively, the previously well-characterised Ca(2+)-selective hepatocyte SOCs through mechanisms which involve the bile acid-induced redistribution of STIM1.  相似文献   

11.
Guinea pig gallbladder bile contains chenodeoxycholic acid (62 +/- 5%), ursodeoxycholic acid (8 +/- 5%), and 7-ketolithocholic acid (30 +/- 5%). All three bile acids became labeled to the same specific activity within 30 min after [3H]cholesterol was injected into bile fistula guinea pigs. When a mixture of [3H]ursodeoxycholic acid and [14C]chenodeoxycholic acid was infused into another bile fistula guinea pig, little 3H could be detected in either chenodeoxycholic acid or 7-ketolithocholic acid. But, 14C was efficiently incorporated into ursodeoxycholic and 7-ketolithocholic acids. Monohydroxylated bile acids make up 51% and ursodeoxycholic acid 38% of fecal bile acids. After 3 weeks of antibiotic therapy, lithocholic acid was reduced to 6% of the total, but ursodeoxycholic acid (5-11%) and 7-ketolithocholic (15-21%) acid persisted in bile. Lathosterol constituted 19% of skin sterols and was detected in the feces of an antibiotic-fed animal. After one bile fistula guinea pig suffered a partial biliary obstruction, ursodeoxycholic and 7-ketolithocholic acids increased to 46% and 22% of total bile acids, respectively. These results demonstrate that chenodeoxycholic acid, ursodeoxycholic acid, and 7-ketolithocholic acid can all be made in the liver of the guinea pig.  相似文献   

12.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

13.
The mutagenicity of bile acids using a fluctuation test   总被引:1,自引:0,他引:1  
The mutagenicity of bile acids was detected by a fluctuation test using Salmonella typhimurium TA100 and TA98 as tester strains. Cholic acid, chenodeoxycholic acid, deoxycholic acid and ursodeoxycholic acid were mutagenic in this test while lithocholic acid was not. The mutagenicity of the bile acids on a molar basis was roughly one-fourth that of methyl methanesulfonate, a moderately potent mutagen. Epidemiological studies have shown a high correlation between levels of bile acids excreted and colon cancer. However, no evidence has previously been reported showing that bile acids are mutagenic. Our results suggest that bile acids may be important in the etiology of colon cancer.  相似文献   

14.
The rate of 7alpha-dehydroxylation of primary bile acids was quantitatively measured radiochromatographically in anaerobically washed whole cell suspensions of Clostridium leptum. The pH optimum for the 7alpha-dehydroxylation of both cholic and chenodeoxycholic acid was 6.5-7.0. Substrate saturation curves were observed for the 7alpha-dehydroxylation of cholic and chenodeoxycholic acid. However, cholic acid whole cell K0.5 (0.37 micron) and V (0.20 mumol hr-1mg protein-1) values differed significantly from chenodeoxycholic acid whole cell K0.5 (0.18 micron) and V (0.50 mumol-1 hr-1 mg protein-1). 7alpha-Dehydroxylation activity was not detected using glycine and taurine-conjugated primary bile acids, ursodeoxycholic acid, cholic acid methyl ester, or hyocholic acid as substrates. Substrate competition experiments showed that cholic acid 7 alpha-dehydroxylation was reduced by increasing concentrations of chendeoxycholic acid; however, chenodeoxycholic acid 7alpha-dehydroxylation activity was unaffected by increasing concentrations of cholic acid. A 10-fold increase in cholic and 7alpha-dehydroxylation activity occurred during the transition from logarithmic to stationary phase growth whether cells were cultured in the presence or absence of sodium cholate. In the same culture, a similar increase in chenodeoxycholic acid 7alpha-dehydroxylation was detected only in cells cultured in the presence of sodium cholate. These results indicate the possible existence of two independent systems for 7alpha-dehydroxylation in C. Leptum.  相似文献   

15.
4,4-Di-isothiocyanostilbene-2,2'-disulphonic acid inhibition of taurocholate efflux from canalicular vesicles was used to demonstrate that potential driven and 'carrier'-mediated canalicular excretion of taurocholate occur via a common, rather than two separate, pathways. This electrogenic canalicular bile acid 'carrier' preferentially transports trihydroxylated and conjugated dihydroxylated bile acids, but not the unphysiological oxo bile acids, and possibly extends its substrate specificity to other amphipathic molecules such as sulphobromophthalein.  相似文献   

16.
The hepatic uptake of chenodeoxycholic acid, taurochenodeoxycholic acid, chenodeoxycholic acid 3-sulphate and taurochenodeoxycholate acid 3-sulphate by isolated rat hepatocytes was examined. Taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake occurred by a saturable, energy-dependent process while chenodeoxycholic acid uptake was predominantly non-saturable, possibly simple diffusion. Apparent Km (mumol/l) and Vmax (nmol/mg protein per min) values (mean +/- S.D.), respectively, were: chenodeoxycholic acid (saturable component), 33 +/- 6.4 and 4.8 +/- 0.6; taurochenodeoxycholic acid, 11.1 +/- 2.0 and 3.1 +/- 0.5; chenodeoxycholic acid 3-sulphate, 6.1 +/- 0.9 and 2.3 +/- 0.4; and taurochenodeoxycholic acid 3-sulphate, 5.0 +/- 0.7 and 0.9 +/- 0.15. Both conjugation with taurine and sulphation at the 3 position resulted in a reduction in the values of Km and Vmax. Uptake of each of the bile acids taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate was competitively inhibited by the other two, with taurochenodeoxycholic acid a potent inhibitor of both taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake. Other bile acids also inhibited. Uptake was inhibited by albumin in the order chenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid and was dependent on the extent of bile acid binding to albumin.  相似文献   

17.
Abstract: The bile acid composition of bile obtained from the hepatopancreatic ducts of three species of sperm whales (Cetacea: Physeteridae) was investigated. Bile acids were isolated by adsorption chromatography and analyzed by sequential HPLC, SIMS, and GLC-MS. In each species the dominant bile acids were deoxycholic acid (a secondary bile acid formed by bacterial 7α-dehydroxylation of cholic acid), and chenodeoxycholic acid (a primary bile acid) which together composed more than 86% of biliary bile acids in all three species. In Physeter catodon (sperm whale) deoxycholic acid constituted 79%, and in Kogia breviceps (pygmy sperm whale) it was 61% of biliary bile acids. The sperm whale, which differs from other whales in having a remnant of a large intestine, is the second mammal identified to date in which deoxycholic acid is the predominant bile acid. The high proportion of deoxycholic acid indicates that in the Physeteridae, anaerobic fermentation occurs in its cecum, and that bile acids undergo enterohepatic cycling. Also found were minor proportions of cholic acid, as well as bacterial derivatives of chenodeoxycholic acid (ursodeoxycholic acid, lithocholic acid, and the 12β-epimer of allo-deoxycholic acid). Bile acids were conjugated with taurine in all species; however, in the sperm whale ( Physeter ) glycine conjugates were present in trace proportions. The bile acid hydroxylation pattern (12α- but not 6α-hydroxylation), lack of primary 5α- (allo) bile acids, and presence of glycine conjugated bile acids suggests the possibility that sperm whales originated from ancient artiodactyls.  相似文献   

18.
Phloracetophenone (2,4,6-trihydroxyacetophenone, THA) is a potent choleretic in the bile fistula rat, although the mechanism is unknown. In the present study, we examined how THA enhances bile secretion. Stepwise infusions of THA (1-4 micromol/min) in the isolated perfused rat liver resulted in an immediate and dose-dependent increase in bile flow (BF), which reached saturation. The increase in BF was not associated with a change in the excretion of bile acids, suggesting that THA stimulated bile acid-independent bile flow. To further define the mechanism, the effect of THA on the excretion of sulfobromophthalein (BSP) and disulfobromophthalein (DBSP), typical multidrug resistance protein-2 (Mrp2) substrates was examined. THA inhibited the biliary excretion of both substrates. Because DBSP is excreted without conjugation to glutathione, in contrast to BSP, the findings suggest that THA might compete with DBSP and BSP metabolites at a common canalicular transport site, presumably Mrp2. THA infusions had no effect on the subcellular localization and distribution of either Mrp2 or the bile salt export pump (Bsep), nor the integrity of the tight junction. In contrast, the choleretic activity of THA was completely absent in the TR(-) rat, an animal model that lacks Mrp2, directly implicating this canalicular export pump as the mechanisms by which THA is excreted in bile. THA also partially reversed the cholestatic effects of estradiol-17beta-D-glucuronide, a process also dependent on Mrp2. In conclusion, the choleretic activity of THA and its possible metabolites is dependent on Mrp2. THA appears to stimulate BF by its osmotic effects and may attenuate the cholestatic effects of hepatotoxins undergoing biotransformation and excretion via similar pathways.  相似文献   

19.
The isolated livers from normal, streptozotocin-diabetic, and insulin-treated diabetic rats were perfused without and with infused 7 alpha-hydroxycholesterol. Biliary bile acids were extracted and analysed by gas chromatography. In each liver group, total bile acid concentration was more than four times greater with infused 7 alpha-hydroxycholesterol than without the sterol. Without infused 7 alpha-hydroxycholesterol, bile acids in the control group were composed mainly of beta-muricholic acid and to a lesser extent of cholic acid. In the diabetic group, the ratio between these two bile acids reversed. The ratio tended to be normalized by treatment with insulin. With infused 7 alpha-hydroxycholesterol, the control group secreted chenodeoxycholic acid at a considerable higher percentage besides major beta-muricholic acid and minor cholic acid. In the diabetic group, the ratio between the latter two bile acids reversed as was the case with the endogenous secretion, while the percentage of chenodeoxycholic acid remained then unchanged. The diminished percentage of beta-muricholic acid in the diabetic group was increased two times by treatment with insulin.  相似文献   

20.
The metabolic fate of the bile add analogs, 3α,7α-dihydroxy-7β-methyl-5β-cholanoic acid and 3α,7β-dihydroxy-7α-methyl-5β-cholanoic acid, was investigated and compared with that of chenodeoxycholic acid in hamsters. Both bile acid analogs were absorbed rapidly from the intestine and excreted into bile at similar to that of chenodeoxycholic acid. In the strain of hamster studied, the biliary bile were conjugated with both glycine and taurine. After continuous intravenous infusion, chenodeoxycholic acid the analogs became the major bile acid constituents in bile. After oral administration of a single dose of these compounds, fecal analysis revealed the existence of unchanged material (25–35%) as well as considerable amounts of metabolites (65–75%). The major metabolites excreted into feces were more polar than the starting material and were tentatively identified as trifaydroxy-7-methyl compounds by radioactive thin-layer chromatography. However, monohydroxy compounds were also found in the fecal extracts. These results show that chenodeoxycholic acid and ursodeoxycholic acid with a methyl group at the 7-position are resistant to bacterial 7-dehydroxylation than the normally occurring bile acids and that a certain proportion of these analogs is hydroxylated to give the corespondiag trihydroxy compound(s), In a control experiment, about 5% of administered chenodeoxychoulic acid was metabolized to a trihydroxy feile acid, but most of the compound (95%) was transformed into lithocholic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号