首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Nakagaki  D C Foster  K L Berkner  W Kisiel 《Biochemistry》1991,30(45):10819-10824
Previous studies demonstrated proteolytic activation of human blood coagulation factor VII by an unidentified protease following complex formation with tissue factor expressed on the surface of a human bladder carcinoma cell line (J82). In the present study, an active-site mutant human factor VII cDNA (Ser344----Ala) has been constructed, subcloned, and expressed in baby hamster kidney cells. Mutant factor VII was purified to homogeneity in a single step from serum-free culture supernatants by immunoaffinity column chromatography. Mutant factor VII was fully carboxylated, possessed no apparent clotting activity, and was indistinguishable from plasma factor VII by SDS-PAGE. Cell binding studies indicated that mutant factor VII bound to J82 tissue factor with essentially the same affinity as plasma factor VII and was cleaved by factor Xa at the same rate as plasma factor VII. In contrast to radiolabeled single-chain plasma factor VII that was progressively converted to two-chain factor VIIa on J82 monolayers, mutant factor VII was not cleaved following complex formation with J82 tissue factor. Incubation of radiolabeled mutant factor VII with J82 cells in the presence of recombinant factor VIIa resulted in the time-dependent and tissue factor dependent conversion of single-chain mutant factor VII to two-chain mutant factor VIIa. Plasma levels of antithrombin III had no discernible effect on the factor VIIa catalyzed activation of factor VII on J82 cell-surface tissue factor but completely blocked this reaction catalyzed by factor Xa. These results are consistent with an autocatalytic mechanism of factor VII activation following complex formation with cell-surface tissue factor, which may play an important role in the initiation of extrinsic coagulation in normal hemostasis.  相似文献   

2.
Initiation of coagulation by tissue factor   总被引:24,自引:0,他引:24  
Tissue factor (TF) is an integral membrane glycoprotein which functions as an initiator of coagulation. Furthermore, it is probably the principal biological initiator of this essential hemostatic process. This article reviews the studies which form the basis for these assertions. The work on TF is traced from the 19th century discovery of the thromboplastic activity of tissues to the recent purification of the protein from bovine and human tissues and the isolation cDNA clones coding from human TF. The features of TF structure and function which tailor it to the role of initiator of the coagulation cascade are considered. For example, cell-surface TF and factor VII, the plasma serine proteases zymogen, form a proteolytic complex without prior proteolysis of either component. In addition, a kinetic model for the molecular mechanism of TF-initiated clotting is reviewed. The factors which control the expression of TF procoagulant activity by cultured cells are examined in light of the hypothesized role of TF in normal hemostasis. Also, the potential pathological consequences of aberrant TF expression, i.e., thrombosis and hemorrhage, are explored.  相似文献   

3.
Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the γ-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.  相似文献   

4.
Injury of a blood vessel exposes membrane-bound tissue factor (TF) to blood, which allows binding of coagulation factor VIIa (FVIIa). This initiation of the coagulation cascade is dictated by a specific multi-domain interaction between FVIIa and TF. To examine the energies involved in the transition state of the FVIIa:TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with a smaller cysteine residue. Determination of Phi values in each of the positions using surface plasmon resonance measurements enabled us to characterize the transition state complex between the resulting sTF variants and FVIIa. We found that the interactions in the transition state seemed to be most pronounced between the protease domain of FVIIa and sTF while detailed specific interactions between the Gla-domain and sTF were missing. Thus, the transition state energy data indicate a sequential binding event between these two macromolecules.  相似文献   

5.
We have studied the binding of radioiodinated human factor VII and its activated form, factor VIIa, to monolayers of a human bladder carcinoma cell line (J82) that expresses functional cell surface tissue factor. The binding of factors VII and VIIa to these cells was found to be time-, temperature-, and calcium-dependent. In addition, the binding of each protein to J82 cells was specific, dose-dependent, and saturable. The binding isotherms for factors VII and VIIa were hyperbolic, and Scatchard plots of the binding data obtained at 37 degrees C indicated a single class of binding sites for each protein with Kd values of 3.20 +/- 0.51 and 3.25 +/- 0.31 nM, respectively. Factors VII and VIIa, respectively, interacted with 256,000 +/- 39,000 and 320,000 +/- 31,000 binding sites/cell. Competition experiments suggested a common receptor for factors VII and VIIa. Binding of factor VIIa to the cells was completely blocked by preincubation of the cells with polyclonal anti-tissue factor IgG, whereas binding of factor VII was inhibited approximately 90%, suggesting the presence of a small number of tissue factor-independent binding sites specific for factor VII on this cell. Functional studies revealed that factor X activation by increasing amounts of cell-bound factor VII or VIIa was hyperbolic in nature. Half-maximal rates of factor Xa formation occurred at factor VII and VIIa concentrations of 3.7 +/- 0.47 and 3.2 +/- 0.31 nM, respectively. No factor VII- or VIIa-mediated activation of factor X was observed when cells were preincubated with anti-tissue factor IgG. Two-chain 125I-factor VIIa recovered from the cells was identical to the offered ligand as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. In contrast, the offered single-chain 125I-factor VII was progressively converted to two-chain 125I-factor VIIa upon binding to the cells. When the J82 cells were pretreated with anti-tissue factor IgG, both factor VII recovered from the cells and factor VII in the supernatant were in the single-chain form, indicating that cell-surface tissue factor was essential for the activation of factor VII on these cells. These data indicate that binding of factor VII to tissue factor appears to be a prerequisite for its conversion to factor VIIa and the initiation of the extrinsic pathway of coagulation on these cells.  相似文献   

6.
The interaction of factor VIIa with tissue factor (TF) results in an increase in the catalytic efficiency for the hydrolysis of several synthetic peptidyl p-nitroanilide substrates by factor VIIa. The binding of human recombinant factor VIIa to recombinant human TF incorporated into vesicles containing phosphatidylcholine (TF/PC) or phosphatidylcholine/phosphatidylserine (TF/PCPS) was studied using the increased rate of H-D-phenylalanyl L-pipecoyl L-arginine p-nitroanilide (S2238) hydrolysis as a signal for the interaction. The saturable dependence of rate on increasing concentrations of factor VIIa or TF/PCPS yielded no obvious evidence for cooperativity and could be analyzed according to the interaction of factor VIIa with independent noninteracting sites (Kd = 259 +/- 60 pM, n = 1.05 +/- 0.12 mol of factor VIIa/mol of TF at saturation). Identical titration curves and equilibrium parameters were derived from titrations using TF/PC or TF in the absence of phospholipids, indicating that possible protein-membrane interactions do not further stabilize the extrinsic Xase complex. The dissociation constant for the interaction of factor VIIa with TF/PCPS inferred from measurements of factor X activation (Kd = 197 +/- 38 pM) was comparable with the values obtained from measurements of S2238 hydrolysis. In contrast to the membrane-independent nature of the enzyme-cofactor interaction, the rate of factor X activation was reduced by approximately 50-fold when the enzyme complex was assembled using solution-phase TF. Collectively, the result indicate that the membrane dependence of extrinsic Xase function primarily results from an influence of the membrane surface on factor X utilization.  相似文献   

7.
The kinetics of the binding of rVIIa to cell surface tissue factor (TF) and the resultant expression of VIIa/TF activity were studied. Binding of 125I-rVIIa (10 nM) to cell surface TF required 30-60 min for saturation, whereas VIIa/TF activity was fully expressed toward factor X (F X) on intact monolayers after only 1 min of incubation. At the time only 10-20% of the total VIIa TF complexes present at saturation had formed. Freeze-thawing the monolayers before assay increased VIIa/TF activity up to 30-fold, and the time course of its expression was similar to that of TF-specific binding of VIIa to the monolayers. Equilibrium binding revealed a single high affinity binding class of TF sites on intact monolayers for rVIIa with a Kd of 1.6 nM. Experiments with active-site inhibited rVIIa yielded evidence for two populations of VIIa. TF complexes on intact monolayers: (1) a minor population (less than 20%) that formed within 1 min of incubation and accounted for all VIIa/TF activity toward F X present on the intact monolayers, and (2) a major population that was inactive toward F X on intact monolayers but which was fully active after the monolayers were lysed. Tissue factor pathway inhibitor (TFPI).F Xa complexes inhibited the VIIa/TF activity of the first population, i.e. of the complexes active on intact monolayers, half maximally at a concentration of 0.2 nM TFPI. TFPI/Xa also bound to the second population of VIIa.TF complexes on intact monolayers and inhibited their expression of VIIa/TF activity following cell lysis with a half-maximal inhibitory concentration of 2.0 nM. The potential physiologic implications of these findings are discussed.  相似文献   

8.
Exposure of blood to tissue factor leads to the formation of a high affinity tissue factor/factor VIIa complex which initiates blood coagulation. As a first step toward obtaining structural information of this enzyme system, a complex of active-site inhibited factor VIIa (F.VIIai) and soluble tissue factor (sTF) was prepared for crystallization. Crystals were obtained, but only after long incubation times. Analysis by SDS-PAGE and mass spectrometry indicated the presence of sTF fragments similar to those formed by proteolytic digestion with subtilisin (Konigsberg, W., Nemerson, Y., Fang, C., Lin, T.-C. Thromb. Haemost. 69:1171, 1993). To test the hypothesis that limited proteolysis of sTF facilitated the crystallization of the complex, sTF fragments were generated by subtilisin digestion and purified. Analysis by tandem mass spectrometry showed the presence of nonoverlapping N- and C-terminal sTF fragments encompassing more than 90% of the tissue factor extracellular domain. Enzymatic assays and binding studies demonstrated that an equimolar mixture of N- and C-terminal fragments bound to factor VIIa and fully restored cofactor activity. A complex of F.VIIai and sTF fragments was prepared for crystallization. Crystals were obtained using microseeding techniques. The best crystals had maximum dimensions of 0.12 × 0.12 × 0.6 mm and showed diffraction to a resolution of 3 Å. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The crystallographic structure of human coagulation factor VIIa/tissue factor complex bound with calcium ions was used to model the solution structure of the light chain of factor VIIa (residues 1-142) in the absence of tissue factor. The Amber force field in conjunction with the particle mesh Ewald summation method to accommodate long-range electrostatic interactions was used in the trajectory calculations. The estimated TF-free solution structure was then compared with the crystal structure of factor VIIa/tissue factor complex to estimate the restructuring of factor VIIa due to tissue factor binding. The solution structure of the light chain of factor VIIa in the absence of tissue factor is predicted to be an extended domain structure similar to that of the tissue factor-bound crystal. Removal of the EGF1-bound calcium ion is shown by simulation to lead to minor structural changes within the EGF1 domain, but also leads to substantial relative reorientation of the Gla and EGF1 domains.  相似文献   

10.
11.
TFPI (tissue factor pathway inhibitor) is an anticoagulant protein that prevents intravascular coagulation through inhibition of fXa (Factor Xa) and the TF (tissue factor)-fVIIa (Factor VIIa) complex. Localization of TFPI within caveolae enhances its anticoagulant activity. To define further how caveolae contribute to TFPI anticoagulant activity, CHO (Chinese-hamster ovary) cells were co-transfected with TF and membrane-associated TFPI targeted to either caveolae [TFPI-GPI (TFPI-glycosylphosphatidylinositol anchor chimaera)] or to bulk plasma membrane [TFPI-TM (TFPI-transmembrane anchor chimaera)]. Stable clones had equal expression of surface TF and TFPI. TX-114 cellular lysis confirmed localization of TFPI-GPI to detergent-insoluble membrane fractions, whereas TFPI-TM localized to the aqueous phase. TFPI-GPI and TFPI-TM were equally effective direct inhibitors of fXa in amidolytic assays. However, TFPI-GPI was a significantly better inhibitor of TF-fVIIa than TFPI-TM, as measured in both amidolytic and plasma-clotting assays. Disrupting caveolae by removing membrane cholesterol from EA.hy926 cells, which make TFPIα, CHO cells transfected with TFPIβ and HUVECs (human umbilical vein endothelial cells) did not affect their fXa inhibition, but significantly decreased their inhibition of TF-fVIIa. These studies confirm and quantify the enhanced anticoagulant activity of TFPI localized within caveolae, demonstrate that caveolae enhance the inhibitory activity of both TFPI isoforms and define the effect of caveolae as specifically enhancing the anti-TF activity of TFPI.  相似文献   

12.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

13.
Vascular injury leads to the exposure of blood to fibroblasts and smooth muscle cells within the vessel wall. These cells constitutively express tissue factor (TF), the cellular receptor for plasma clotting factor VIIa (FVIIa). Formation of TF.FVIIa complexes on cell surfaces triggers the blood coagulation cascade. In the present study, we have investigated the fate of TF.FVIIa complexes formed on the cell surface of fibroblasts in the presence and absence of plasma inhibitor, tissue factor pathway inhibitor (TFPI). FVIIa bound to TF on the cell surface was internalized and degraded without depleting the cell surface TF antigen and activity. TFPI significantly enhanced the TF-specific internalization and degradation of FVIIa. TFPI-enhanced internalization and degradation of FVIIa requires the C-terminal domain of TFPI and factor Xa. TFPI. Xa-mediated internalization of FVIIa was associated with the depletion of TF from the cell surface. A majority of the internalized FVIIa was degraded, but a small portion of the internalized FVIIa recycles back to the cell surface as an intact protein. In addition to TF, other cell surface components, such as low density lipoprotein receptor-related protein (LRP) and heparan sulfates, are essential for TFPI.Xa-induced internalization of FVIIa. Acidification of cytosol, which selectively inhibits the endocytotic pathway via coated pits, inhibited TFPI.Xa-mediated internalization but not the basal internalization of FVIIa. Overall, our data support the concept that FVIIa bound to cell surface TF was endocytosed by two different pathways. FVIIa complexed with TF in the absence of the inhibitor was internalized via a LRP-independent and probably noncoated pit pathway, whereas FVIIa complexed with TF along with the inhibitor was internalized via LRP-dependent coated pit pathway.  相似文献   

14.
The capacity of inflammatory cell-derived matrix metalloproteinases (MMPs) to cleave tissue factor pathway inhibitor (TFPI) and alter its activity was investigated. MMP-7 (matrilysin) rapidly cleaved TFPI to a major 35-kDa product. In contrast, MMP-1 (collagenase-1), MMP-9 (gelatinase B), and MMP-12 (macrophage elastase) cleaved TFPI into several fragments including the 35-kDa band. However, rates of cleavage were most rapid for MMP-7 and MMP-9. NH(2)-terminal amino acid sequencing revealed that MMP-12 cleaved TFPI at Lys(20)-Leu(21)(close to Kunitz I domain and producing a 35-kDa band), Arg(83)-Ile(84) (between Kunitz I and II domains), and Ser(174)-Thr(175) (between Kunitz II and III domains). MMP-7 and MMP-9 cleaved TFPI at Lys(20)-Leu(21) with additional COOH-terminal processing. These MMPs did not cleave tissue factor (TF), factor VII, and factor Xa. Proteolytic cleavage by MMP-1, MMP-7, MMP-9, and MMP-12 resulted in considerable loss of TFPI activity. These observations indicate specific cleavage of TFPI by MMPs, which broadens their substrate profile. Co-localization of MMPs, TF, and TFPI in atherosclerotic tissues suggests that release of MMPs from inflammatory cell leukocytes may effect TF-mediated coagulation.  相似文献   

15.
As an attempt to investigate the dynamic interactions between plasma serine protease, coagulation factor VIIa (VIIa) and its cofactor, tissue factor (TF), we performed normal mode analysis (NMA) of the complex of VIIa with soluble TF (the extracellular part of TF; sTF). We compared fluctuations of Calpha atoms of VIIa or sTF derived from NMA in the VIIa-sTF complex with those of VIIa or sTF in an uncomplexed condition. The atomic fluctuations of the Calpha atoms of sTF complexed with VIIa did not significantly differ from those of sTF without VIIa. In contrast, the atomic fluctuations of VIIa complexed with sTF were much smaller than those of VIIa without sTF. These results suggest that domain motions of VIIa molecule alone are markedly dampened in the VIIa-sTF complex and that the sTF molecule is relatively more rigid than the VIIa molecule. This may indicate functions of TF as a cofactor.  相似文献   

16.
The oxidation of the activated form of recombinant coagulation factor VII (FVIIa) by hydrogen peroxide has been studied. The three predominant oxidation products observed at pH 7.5 have been characterized as methionine sulfoxide derivatives of the parent protein involving two of the four methionine residues of the protein, Met298 and Met306. We conclude that oxidation of FVIIa with hydrogen peroxide only affects methionine residues and selectively oxidizes those which are readily accessible to the solvent. The oxidation process has been studied in the pH range 3.5-9.5. The total rate of oxidation of FVIIa as well as the formation of the three oxidation products is consistent over the pH interval 7.5-9.5. However, under acidic conditions, significant variations have been observed indicating a conformational change of FVIIa. Oxidized FVIIa had the same amidolytic activity as the native protein. The binding to soluble tissue factor (TF) was weaker after oxidation as manifested by a threefold increase in dissociation constant and the amidolytic activity in complex with soluble TF was 80% compared to that of native FVIIa. In complex with lipid surface TF, the rate of factor X activation catalyzed by oxidized FVIIa was also reduced by approximately 20% compared to that of native FVIIa. However, native and oxidized FVIIa appeared to bind lipidated TF with indistinguishable affinities.  相似文献   

17.
Human TFPI-2 is an extracellular matrix-associated Kunitz-type serine proteinase inhibitor. We previously demonstrated that a human fibrosarcoma cell line, HT-1080, does not express TFPI-2, but genetic restoration of TFPI-2 expression in these cells markedly inhibited their growth and metastasis in vivo. In the present study, either full-length recombinant TFPI-2, or its mutated first Kunitz-type domain (R24K KD1), were offered to HT-1080 cells, and the degree of apoptosis assessed by nuclear fragmentation, ethidium bromide and acridine orange staining, fluorescence activated cell sorting, immunoblotting and gene expression profiling. R24K KD1 induced apoptosis in 69% of HT-1080 cells in a 48 h period compared to 39% for TFPI-2, while a KD1 preparation lacking a reactive site arginine/lysine residue (R24Q KD1) produced only an 18% apoptosis rate, suggesting that the observed apoptosis was related to proteinase inhibition. Immunoblotting experiments indicated increased caspase 3 and 9 activation, up-regulation of pro-apoptotic Bax and suppression of anti-apoptotic Bcl-2 protein. Finally, microarray analyses of R24K KD1-treated cells indicated elevated expression of several pro-apoptotic genes and under-expression of anti-apoptotic genes. Collectively, our results demonstrate that treatment of HT-1080 cells exogenously with either TFPI-2 or R24K KD1 activates caspase-mediated, pro-apoptotic signaling pathways resulting in apoptosis.  相似文献   

18.
An inhibitor of the complex of factor VIIa and tissue factor (fVIIa/TF), 2-substituted-4-amidinophenylpyruvic acid 1a, was structurally modified with the aim of increasing its potency and selectivity. The lead compound 1a was originally found in our factor Xa (fXa) inhibitor library on the basis of structural similarity of the primary binding sites of fVIIa and fXa. The design was based on computational docking studies using the extracted active site of fVIIa. Compound 1j was found to inhibit factor VIIa/TF at nanomolar concentration with improved selectivity versus fXa and thrombin and it preferentially prolonged the clotting time in the TF-dependent extrinsic pathway.  相似文献   

19.
Prothrombin is converted to thrombin by factor Xa in the cell-associated prothrombinase complex. Prothrombin is present in calcified bone matrix and thrombin exerts effects on osteoblasts as well as on bone resorption by osteoclasts.We investigated whether (1) osteoclasts display factor Xa-dependent prothrombinase activity and (2) osteoclasts express critical regulatory components upstream of the prothrombinase complex.The osteoclast differentiation factor RANKL induced formation of multinucleated TRAP positive cells concomitant with induction of prothrombinase activity in cultures of RAW 264.7 cells and bone marrow osteoclast progenitors.Expression analysis of extrinsic coagulation factors revealed that RANKL enhanced protein levels of factor Xa as well as of coagulation factor III (tissue factor). Inhibition assays indicated that factor Xa and tissue factor were involved in the control of prothrombinase activity in RANKL-differentiated osteoclasts, presumably at two stages (1) conversion of prothrombin to thrombin and (2) conversion of factor X to factor Xa, respectively.Activation of the extrinsic coagulation pathway during osteoclast differentiation through induction of tissue factor and factor Xa by a RANKL-dependent pathway indicates a novel role for osteoclasts in converting prothrombin to thrombin.  相似文献   

20.
Coagulation factor VIIa (FVIIa) requires tissue factor (TF) to attain full catalytic competency and to initiate blood coagulation. In this study, the mechanism by which TF allosterically activates FVIIa is investigated by a structural dynamics approach that combines molecular dynamics (MD) simulations and hydrogen/deuterium exchange (HX) mass spectrometry on free and TF-bound FVIIa. The differences in conformational dynamics from MD simulations are shown to be confined to regions of FVIIa observed to undergo structural stabilization as judged by HX experiments, especially implicating activation loop 3 (residues 365-374{216-225}) of the so-called activation domain and the 170-loop (residues 313-322{170A-175}) succeeding the TF-binding helix. The latter finding is corroborated by experiments demonstrating rapid deglycosylation of Asn322 in free FVIIa by PNGase F but almost complete protection in the presence of TF or an active-site inhibitor. Based on MD simulations, a key switch of the TF-induced structural changes is identified as the interacting pair Leu305{163} and Phe374{225} in FVIIa, whose mutual conformations are guided by the presence of TF and observed to be closely linked to the structural stability of activation loop 3. Altogether, our findings strongly support an allosteric activation mechanism initiated by the stabilization of the Leu305{163}/Phe374{225} pair, which, in turn, stabilizes activation loop 3 and the S(1) and S(3) substrate pockets, the activation pocket, and N-terminal insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号