首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The pathway for RNA interference is widespread in metazoans and participates in numerous cellular tasks, from gene silencing to chromatin remodeling and protection against retrotransposition. The unicellular eukaryote Trypanosoma cruzi is missing the canonical RNAi pathway and is unable to induce RNAi-related processes. To further understand alternative RNA pathways operating in this organism, we have performed deep sequencing and genome-wide analyses of a size-fractioned cDNA library (16-61 nt) from the epimastigote life stage. Deep sequencing generated 582,243 short sequences of which 91% could be aligned with the genome sequence. About 95-98% of the aligned data (depending on the haplotype) corresponded to small RNAs derived from tRNAs, rRNAs, snRNAs and snoRNAs. The largest class consisted of tRNA-derived small RNAs which primarily originated from the 3' end of tRNAs, followed by small RNAs derived from rRNA. The remaining sequences revealed the presence of 92 novel transcribed loci, of which 79 did not show homology to known RNA classes.  相似文献   

3.
Fourteen compounds were evaluated for their activity against Trypanosoma cruzi blood stream forms at the concentration of 500 g/ml. Six compounds were active and re-tested at lower concentrations.  相似文献   

4.
Chagas disease is present in Latin America, North America, Europe, and Asia, where between 6 and 7 million people are infected. This illness is transmitted mainly by the insect vector during blood feeding and by oral transmission. Chagas disease is treated with benznidazole and its effectiveness depends on which phase of the disease the treatment starts. Therefore, the identification of new compounds with anti-Chagas activities is important. Protozoan parasites present cysteine proteases, important for host cell infection and differentiation, which have been explored as valid targets against pathogenic parasites. In the present study, the effects of 10 new 1,10-phenanthroline derivatives were evaluated on T. cruzi. Three of them were effective against amastigotes (IC50 from 0.5 to 3 μM), epimastigotes (IC50 from 0.5 to at least 10 μM) and trypomastigotes (and LD50 from 1 to 10 μM), and they were not toxic to mammalian cells (CC50 ≥ 20 μM). These compounds also promoted the formation of autophagosomes, alter the level of heterochromatin condensation, caused the loss of kDNA topology, and the elongated cell body shape. Apart from ultrastructural alterations, an increased generation of ROS and decreased mitochondrial membrane potential were observed. Therefore, these drugs revealed potential trypanocidal effects and warrant further antiparasitic studies against Chagas disease.  相似文献   

5.
Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.  相似文献   

6.
The drugs presently in use against Chagas disease are very toxic, inducing a great number of side effects. Alternative treatments are necessary, not only for Chagas disease but also for other diseases caused by protozoan parasites where current drugs pose toxicity problems. The plant microtubule inhibitor trifluralin has previously been tested with success against Leishmania, Trypanosoma brucei and several other protozoan parasites. Trypanosoma cruzi, the causative agent of Chagas disease, is also sensitive to the drug. This sensitivity has been correlated with the deduced amino acid sequences of alpha- and beta-tubulin of T. cruzi as compared with plant, mammal and other parasite sequences.  相似文献   

7.
During Trypanosoma cruzi cell invasion, signal transduction pathways are triggered in parasite and host cells, leading to a rise in intracellular Ca(2+) concentration. We posed the question whether calcineurin (CaN), in particular the functional regulatory subunit CaNB, a Ca(2+)-binding EF-hand protein, was expressed in T. cruzi and whether it played a role in cell invasion. Here we report the cloning and characterization of CL strain CaNB gene, as well as the participation of CaNB in cell invasion. Treatment of metacyclic trypomastigotes (MT) or tissue-culture trypomastigotes (TCT) with the CaN inhibitors cyclosporin or cypermethrin strongly inhibited (62-64%) their entry into HeLa cells. In assays using anti-phospho-serine/threonine antibodies, a few proteins of MT were found to be dephosphorylated in a manner inhibitable by cyclosporin upon exposure to HeLa cell extract. The phosphatase activity of CaN was detected by a biochemical approach in both MT and TCT. Treatment of parasites with antisense phosphorothioate oligonucleotides directed to TcCaNB-CL, which reduced the expression of TcCaNB and affected TcCaN activity, resulted in approximately 50% inhibition of HeLa cell entry by MT or TCT. Given that TcCaNB-CL may play a key role in cell invasion and differs considerably in its primary structure from the human CaNB, it might be considered as a potential chemotherapeutic target.  相似文献   

8.
Protozoan parasites are responsible of important healthy problems, among others malaria, leishmaniasis and trypanosomiasis. The present work reports the characterization of the first mammalian ATP-binding cassette transporter, subfamily A (ABCA)-like in Trypanosoma cruzi. TcABC1 is a single copy gene differentially expressed along the life cycle of the parasite, being absent in its infective form. TcABC1 localizes to the plasma membrane, flagellar pocket and intracellular vesicles. Functional studies of TcABC1 in transfected parasites suggest that the protein is implicated in intracellular trafficking, as determined by the analysis of endocytosis and exocytosis events. The accumulation of the endocytic markers FM4-64 and NBD-SM is increased in transfected parasites. Similarly, ectophosphatase and ectoATPase activities are increased in TcABC1 overproducers. Indeed, transmission electronic microscopy analysis showed a higher number of intracellular vesicles in TcABC1 transfectants. Taken together, these results suggest that the protein is involved in the endocytic and exocytic pathways of T. cruzi.  相似文献   

9.
Cyclosporin A (CsA) nonimmunosuppressive analogs were evaluated against Trypanosoma cruzi and on TcCyP19, a cyclophilin of 19 kDa. Two out of eight CsA analogs, H-7-94 and F-7-62 showed the best anti-parasitic effects on all in vitro assays. Their IC(50) values were 0.82 and 3.41 microM, respectively, compared to CsA IC(50) value 5.39 microM on epimastigote proliferation; and on trypomastigote lysis their IC(50) values were 0.97 and 2.66 microM compared to CsA IC(50) value 7.19 microM. H-7-94 and F-7-62 were also more effective than CsA in inhibiting trypomastigote infection. The enzymatic activity of TcCyP19 was inhibited by all CsA derivatives, suggesting this target is involved in the trypanocidal effects observed.  相似文献   

10.
Base J or beta-d-glucosylhydroxymethyluracil is a modification of thymine residues within the genome of kinetoplastid parasites. In organisms known to contain the modified base, J is located mainly within the telomeric repeats. However, in Trypanosoma brucei, a small fraction of J is also located within the silent subtelomeric variant surface glycoprotein (VSG) gene expression sites, but not in the active expression site, suggesting a role for J in regulating telomeric genes involved in pathogenesis. With the identification of surface glycoprotein genes adjacent to telomeres in the South American Trypanosome, Trypanosoma cruzi, we became interested in the telomeric distribution of base J. Analysis of J and telomeric repeat sequences by J immunoblots and Southern blots following DNA digestion, reveals approximately 25% of J outside the telomeric repeat sequences. Moreover, the analysis of DNA sequences immunoprecipitated with J antiserum, localized J within subtelomeric regions rich in life-stage-specific surface glycoprotein genes involved in pathogenesis. Interestingly, the pattern of J within these regions is developmentally regulated. These studies provide a framework to characterize the role of base J in the regulation of telomeric gene expression/diversity in T. cruzi.  相似文献   

11.
Phosphorylation of proteins at tyrosine is an important mechanism for regulating cell growth and proliferation in metazoan organisms. In this report, we have demonstrated that Trypanosoma brucei, a protozoan parasite, possesses a tyrosine kinase that plays a role in regulation of proliferation of this protozoan. Genistein, a tyrosine kinase inhibitor, prevented multiplication of the parasite. An in vitro kinase assay demonstrated the presence of a kinase capable of phosphorylating an exogenous substrate at tyrosine, and genistein was able to reduce trypanosome-mediated phosphorylation of this substrate. An alkali digestion of 32P-labeled trypanosome proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated several proteins phosphorylated at tyrosine. These results indicate that T. brucei has a tyrosine kinase that is involved in proliferation or growth regulation of the parasite and provide further evidence for the possibility of growth factor regulation and signal transduction in trypanosomes.  相似文献   

12.
Chagas disease is still an important health problem in Central and South America. However, the only drugs currently available for specific treatment of this disease may induce toxic side effects in the host. The aim of this work was to determine the activity of N-benzenesulfonylbenzotriazole (BSBZT) against the protozoan parasite Trypanosoma cruzi. The effects of BSBZT and benzotriazole (BZT) were compared to those of benznidazole (BZL) on epimastigote and trypomastigote forms. BSBZT was found to have an in vitro growth inhibitory dose-dependent activity against epimastigotes, with flow cytometry analysis confirming that the treated parasites presented size reduction. BSBZT showed an IC(50) of 21.56 μg/mL (81.07 μM) against epimastigotes at 72 h of incubation, whereas BZT did not affect the growth of this parasite form. Furthermore, the toxic effect of BSBZT, was stronger and appeared earlier (at 24h) in trypomastigotes than in epimastigotes, with the LC(50) of this compound being 28.40 μg/mL (106.79 μM) against trypomastigotes. The concentrations of BSBZT used in this study presented low hemolytic activity and cytotoxicity. Consequently, at concentrations near IC(50) and LC(50) (25μg/mL), BSBZT caused only 2.4% hemolysis and 15% of RAW 264.7 cell cytotoxicity. These results reveal the potential of BSBZT as a prototype in drug design for developing new anti-T. cruzi compounds.  相似文献   

13.
14.
《Phytomedicine》2015,22(11):969-974
BackgroundThe current treatment of Chagas disease, endemic in Latin America and emerging in several countries, is limited by the frequent side effects and variable efficacy of benznidazole. Natural products are an important source for the search for new drugs.Aim/hypothesisConsidering the great potential of natural products as antiparasitic agents, we investigated the anti-Trypanosoma cruzi activity of a concentrated ethanolic extract of Physalis angulata (EEPA).MethodsCytotoxicity to mammalian cells was determined using mouse peritoneal macrophages. The antiparasitic activity was evaluated against axenic epimastigote and bloodstream trypomastigote forms of T. cruzi, and against amastigote forms using T. cruzi-infected macrophages. Cell death mechanism was determined in trypomastigotes by flow cytometry analysis after annexin V and propidium iodide staining. The efficacy of EEPA was examined in vivo in an acute model of infection by monitoring blood parasitaemia and survival rate 30 days after treatment. The effect against trypomastigotes of EEPA and benznidazole acting in combination was evaluated.ResultsEEPA effectively inhibits the epimastigote growth (IC50 2.9 ± 0.1 µM) and reduces bloodstream trypomastigote viability (EC50 1.7 ± 0.5 µM). It causes parasite cell death by necrosis. EEPA impairs parasite infectivity as well as amastigote development in concentrations noncytotoxic to mammalian cells. In mice acutely-infected with T. cruzi, EEPA reduced the blood parasitaemia in 72.7%. When combined with benznidazole, EEPA showed a synergistic anti-T. cruzi activity, displaying CI values of 0.8 ± 0.07 at EC50 and 0.83 ± 0.1 at EC90.ConclusionEEPA has antiparasitic activity against T. cruzi, causing cell death by necrosis and showing synergistic activity with benznidazole. These findings were reinforced by the observed efficacy of EEPA in reducing parasite load in T. cruzi-mice. Therefore, this represents an important source of antiparasitic natural products.  相似文献   

15.
During the course of screening to discover antitrypanosomal compounds, 24 known plant terpenes (6 sesquiterpenes, 14 sesquiterpene lactones and 4 diterpenes) were evaluated for in vitro antitrypanosomal activity against Trypanosoma brucei brucei. Among them, 22 terpenes exhibited antitrypanosomal activity. In particular, α-eudesmol, hinesol, nardosinone and 4-peroxy-1,2,4,5-tetrahydro-α-santonin all exhibited selective and potent antitrypanosomal activities in vitro. Detailed here in an in vitro antitrypanosomal properties and cytotoxicities of the 24 terpenes compared with two therapeutic antitrypanosomal drugs (eflornithine and suramin). This finding represents the first report of promising trypanocidal activity of these terpenes. Present results also provide some valuable insight with regard to structure–activity relationships and the possible mode of action of the compounds.  相似文献   

16.
Proline racemase catalyzes the interconversion of L- and D-proline enantiomers and has to date been described in only two species. Originally found in the bacterium Clostridium sticklandii, it contains cysteine residues in the active site and does not require co-factors or other known coenzymes. We recently described the first eukaryotic amino acid (proline) racemase, after isolation and cloning of a gene from the pathogenic human parasite Trypanosoma cruzi. Although this enzyme is intracellularly located in replicative non-infective forms of T. cruzi, membrane-bound and secreted forms of the enzyme are present upon differentiation of the parasite into non-dividing infective forms. The secreted form of proline racemase is a potent host B-cell mitogen supporting parasite evasion of specific immune responses. Here we describe that the TcPRAC genes in T. cruzi encode functional intracellular or secreted versions of the enzyme exhibiting distinct kinetic properties that may be relevant for their relative catalytic efficiency. Although the Km of the enzyme isoforms were of a similar order of magnitude (29-75 mM), Vmax varied between 2 x 10(-4 )and 5.3 x 10(-5) mol of L-proline/s/0.125 microM of homodimeric recombinant protein. Studies with the enzyme-specific inhibitor and abrogation of enzymatic activity by site-directed mutagenesis of the active site Cys330 residue reinforced the potential of proline racemase as a critical target for drug development against Chagas' disease. Finally, we propose a protein signature for proline racemases and suggest that the enzyme is present in several other pathogenic and non-pathogenic bacterial genomes of medical and agricultural interest, yet absent in mammalian host, suggesting that inhibition of proline racemases may have therapeutic potential.  相似文献   

17.
Murine T cell lines responsive to the protozoan parasite Trypanosoma cruzi were generated in vitro by stimulating hyperimmune C57BL/6 lymphoid cells with trypomastigote stage antigen. A spleen-derived line designated ST1 and eight clones derived from ST1 were characterized. All lines bear the surface phenotype Thy-1.2+, Ly-1.2+, 2.2- and respond to T. cruzi antigen only in the presence of antigen-presenting cells matched at the I-A subregion of the H2 locus. Clonal specificity analyses indicated that these T. cruzi-selected T cells are species specific and recognize antigenic determinants that are expressed predominantly in the trypomastigote stage. On the basis of their distinct patterns of response to a panel of different T. cruzi strains, clones recognizing strain-specific, shared, or common determinants were identified. Functional studies indicated that ST1 and some but not all of the clones are capable of expressing antigen-specific T helper function in vitro and in vivo. In addition, co-incubation of T. cruzi-specific T cells with cultured T. cruzi-infected syngeneic macrophages led to the dose-dependent destruction of intracellular parasites. Most notably, ST1 and several of the cloned T. cruzi-specific T cell lines were able to passively protect syngeneic recipients from lethal T. cruzi challenge infection. Efforts to identify the parasite antigens recognized by these T cell lines, particularly the protective clones, are currently in progress.  相似文献   

18.
Imipramine and related derivatives were tested as possible chemotherapeutic agents against Trypanosoma cruzi parasites in vitro. The IC50 values and the lethal concentrations for two cloned stocks of the parasite were determined. 2-Nitrodesmethylimipramine was the most effective compound tested (IC50 = 4-7 microM). Parasites that were able to grow and to complete the intracellular cycle in mammalian cells in the presence of the drug could be selected. Differences in susceptibility to some imipramine analogs between T. cruzi-cloned stocks were found. The study also shows that modification of the imipramine molecule by electron-withdrawing groups greatly enhances its biological activity.  相似文献   

19.
We here describe a general strategy for cloning and characterizing telomeric and sub-telomeric regions of the human protozoan parasite Trypanosoma cruzi. The use of a bacterial artificial chromosome vector and a telomeric adaptor produced stable telomeric recombinant clones with inserts ranging from 5 to 25 kb. Analysis of these recombinants provided unique landmarks for chromosomal mapping and sequencing and enabled us to derive a more accurate picture of T. cruzi telomeric organization.  相似文献   

20.
Trypanosomes are unicellular parasites and like all decent parasites, they try to obtain from the host as much material as possible, including lipids. However, the needs of a parasite are not always the same as those of the host, and therefore, mostly, some biosynthetic work still has to be done by the parasite itself. Very often at least modifications of the lipid components that are acquired from the host have to be made. Furthermore, next to the lipids Trypanosoma brucei indeed obtains from the host, some other lipid components have to be synthesized de novo. Especially the processes where the metabolism of T. brucei differs from that of the host, will be discussed, as at least some of them are excellent targets for the development of urgently needed new chemotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号