首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The effect of alteration of the glycolytic pathway on cell damage induced by oxidative stress was investigated with dihydrofolate reductase-deficient Chinese hamster ovary (CHO) cells that either overexpress cytosolic glycerol-3-phosphate dehydrogenase (CHO/cGPDH cells) or are depleted of the A subunit of lactate dehydrogenase as a result of anti-sense RNA expression (CHO/anti-LDH cells). The extent of oxidative phosphorylation in CHO/anti-LDH and CHO/cGPDH cells was increased and decreased, respectively, relative to that in parental CHO cells, as revealed by measurement of the intracellular content of ATP, the rate of cellular O(2) consumption, the mitochondrial membrane potential (DeltaPsi(m)), and the generation of reactive oxygen species. The sensitivity of these cell lines to cell death induced by the exogenous oxidant tert-butyl hydroperoxide decreased according to the rank order CHO/anti-LDH>CHO>CHO/cGPDH. Exogenous pyruvate markedly increased the sensitivity of CHO/cGPDH cells to oxidant-induced death. The differences among the three cell lines in susceptibility to oxidant-induced death were reflected in the proportion of oxidant-treated cells with a subdiploid DNA content, with a collapsed DeltaPsi(m), and with cytochrome c in the cytosol, indicating that death was mediated by apoptosis. These results demonstrate that the influx of respiratory substrate into mitochondria is an important determinant of cell sensitivity to oxidant-induced apoptosis.  相似文献   

4.
5.
d -galactosamine ( d -GalN) toxicity is a useful experimental model of liver failure in human. It has been previously observed that PGE 1 treatment reduced necrosis and apoptosis induced by d -GalN in rats. Primary cultured rat hepatocytes were used to evaluate if intracellular oxidative stress was involved during the induction of apoptosis and necrosis by d -GalN (0-40 mM). Also, the present study investigated if PGE 1 (1 μM) was equally potent reducing both types of cell death. The presence of hypodiploid cells, DNA fragmentation and caspase-3 activation were used as a marker of hepatocyte apoptosis. Necrosis was measured by lactate dehydrogenase (LDH) release. Oxidative stress was evaluated by the intracellular production of hydrogen peroxide (H 2 O 2 ), the disturbances on the mitochondrial transmembrane potential (MTP), thiobarbituric-reacting substances (TBARS) release and the GSH/GSSG ratio. Data showed that intermediate range of d -GalN concentrations (2.5-10 mM) induced apoptosis in association with a moderate oxidative stress. High d -GalN concentration (40 mM) induced a reduction of all parameters associated with apoptosis and enhanced all those related to necrosis and intracellular oxidative stress, including a reduction of GSH/GSSG ratio and MTP in comparison with d -GalN (2.5-10 mM)-treated cells. Although PGE 1 reduced apoptosis induced by d -GalN, it was not able to reduce the oxidative stress and cell necrosis induced by the hepatotoxin in spite to its ability to abolish the GSH depletion.  相似文献   

6.
7.
Oxidative stress, an imbalance between oxidants and antioxidants, contributes to the pathogenesis of traumatic brain injury (TBI). Oxidative neurodegeneration is a key mediator of exacerbated morphological responses and deficits in behavioral recoveries. The present study assessed early hippocampal sequential imbalance to possibly enhance antioxidant therapy. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion. At various times post-TBI, animals were killed and the hippocampus was analyzed for antioxidants (GSH, GSSG, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase) and oxidants (acrolein, 4-hydroxynonenal, protein carbonyl, and 3-nitrotyrosine). Synaptic markers (synapsin I, postsynaptic density protein 95, synapse-associated protein 97, growth-associated protein 43) were also analyzed. All values were compared with those for sham-operated animals. Significant time-dependent changes in antioxidants were observed as early as 3 h posttrauma and paralleled increases in oxidants (4-hydroxynonenal, acrolein, and protein carbonyl), with peak values obtained at 24-48 h. Time-dependent changes in synaptic proteins (synapsin I, postsynaptic density protein 95, and synapse-associated protein 97) occurred well after levels of oxidants peaked. These results indicate that depletion of antioxidant systems following trauma could adversely affect synaptic function and plasticity. Early onset of oxidative stress suggests that the initial therapeutic window following TBI appears to be relatively short, and it may be necessary to stagger selective types of antioxidant therapy to target specific oxidative components.  相似文献   

8.
Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.  相似文献   

9.
The mechanism of action of heme oxygenase-1 (HO-1) in mitochondrial oxidative stress (MOS)-mediated apoptotic tissue injury was investigated. MOS-mediated gastric mucosal apoptosis and injury were introduced in rat by indomethacin, a non-steroidal anti-inflammatory drug. Here, we report that HO-1 was not only induced but also translocated to mitochondria during gastric mucosal injury to favor repair mechanisms. Furthermore, mitochondrial translocation of HO-1 resulted in the prevention of MOS and mitochondrial pathology as evident from the restoration of the complex I-driven mitochondrial respiratory control ratio and transmembrane potential. Mitochondrial translocation of HO-1 also resulted in time-dependent inhibition of apoptosis. We searched for the plausible mechanisms responsible for HO-1 induction and mitochondrial localization. Free heme, the substrate for HO-1, was increased inside mitochondria during gastric injury, and mitochondrial entry of HO-1 decreased intramitochondrial free heme content, suggesting that a purpose of mitochondrial translocation of HO-1 is to detoxify accumulated heme. Heme may activate nuclear translocation of NF-E2-related factor 2 to induce HO-1 through reactive oxygen species generation. Electrophoretic mobility shift assay and chromatin immunoprecipitation studies indicated nuclear translocation of NF-E2-related factor 2 and its binding to HO-1 promoter to induce HO-1 expression during gastric injury. Inhibition of HO-1 by zinc protoporphyrin aggravated the mucosal injury and delayed healing. Zinc protoporphyrin further reduced the respiratory control ratio and transmembrane potential and enhanced MOS and apoptosis. In contrast, induction of HO-1 by cobalt protoporphyrin reduced MOS, corrected mitochondrial dysfunctions, and prevented apoptosis and gastric injury. Thus, induction and mitochondrial localization of HO-1 are a novel cytoprotective mechanism against MOS-mediated apoptotic tissue injury.  相似文献   

10.
Neurological disabilities following traumatic brain injury (TBI) may be due to excitotoxic neuronal loss. The excitotoxic loss of neurons following TBI occurs largely due to hyperactivation of N-methyl-d-aspartate receptors (NMDARs), leading to toxic levels of intracellular Ca(2+). The axon guidance and outgrowth protein collapsin response mediator protein 2 (CRMP2) has been linked to NMDAR trafficking and may be involved in neuronal survival following excitotoxicity. Lentivirus-mediated CRMP2 knockdown or treatment with a CRMP2 peptide fused to HIV TAT protein (TAT-CBD3) blocked neuronal death following glutamate exposure probably via blunting toxicity from delayed calcium deregulation. Application of TAT-CBD3 attenuated postsynaptic NMDAR-mediated currents in cortical slices. In exploring modulation of NMDARs by TAT-CBD3, we found that TAT-CBD3 induced NR2B internalization in dendritic spines without altering somal NR2B surface expression. Furthermore, TAT-CBD3 reduced NMDA-mediated Ca(2+) influx and currents in cultured neurons. Systemic administration of TAT-CBD3 following a controlled cortical impact model of TBI decreased hippocampal neuronal death. These findings support TAT-CBD3 as a novel neuroprotective agent that may increase neuronal survival following injury by reducing surface expression of dendritic NR2B receptors.  相似文献   

11.
Progressive accumulation of DNA damage is causally involved in cellular senescence and organismal aging. The DNA damage kinase ATM plays a central role in maintaining genomic stability. ATM mutations cause the genetic disorder ataxia telangiectasia, which is primarily characterized by progressive neurodegeneration and cancer susceptibility. Although the importance of ATM function to protect against oxidative DNA damage and during aging is well described, the mechanism of ATM activation by these stimuli is not known. Here we identify ATM interactor (ATMIN) as an essential component of the ATM signaling pathway in response to oxidative stress and aging. Embryos lacking ATMIN (atmin(Δ/Δ)) died in utero and showed increased numbers of cells positive for phosphorylated histone H2aX, indicative of increased DNA damage. atmin(Δ/Δ) mouse embryonic fibroblasts accumulated DNA damage and prematurely entered senescence when cultured at atmospheric oxygen levels (20%), but this defect was rescued by addition of an antioxidant and also by culturing cells at physiological oxygen levels (3%). In response to acute oxidative stress, atmin(Δ/Δ) mouse embryonic fibroblasts showed slightly lower levels of ATM phosphorylation and reduced ATM substrate phosphorylation. Conditional deletion of ATMIN in the murine nervous system (atmin(ΔN)) resulted in reduced numbers of dopaminergic neurons, as does ATM deficiency. ATM activity was observed in old, but not in young, control mice, but aging-induced ATM signaling was impaired by ATMIN deficiency. Consequently, old atmin(ΔN) mice showed accumulation of DNA damage in the cortex accompanied by gliosis, resulting in increased mortality of aging mutant mice. These results suggest that ATMIN mediates ATM activation by oxidative stress, and thereby ATMIN protects the aging brain by preventing accumulation of DNA damage.  相似文献   

12.
Oxidative stress is implicated in the pathogenesis of diabetic complications. The experiments were performed on normal and experimental male Wistar rats treated with Scoparia dulcis plant extract (SPEt). The effect of SPEt was tested on streptozotocin (STZ) treated Rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. Administration of an aqueous extract of Scoparia dulcis by intragastric intubation (po) at a dose of 200 mg/kg body weight significantly decreased the blood glucose and lipid peroxidative marker thiobarbituric acid reactive substances (TBARS) with significant increase in the activities of plasma insulin, pancreatic superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in streptozotocin diabetic rats at the end of 15 days treatment. Streptozotocin at a dose of 10 mug/mL evoked 6-fold stimulation of insulin secretion from isolated islets indicating its insulin secretagogue activity. The extract markedly reduced the STZ-induced lipidperoxidation in RINm5F cells. Further, SPEt protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. Treatment of RINm5F cells with 5 mM STZ and 10 mug of SPEt completely abrogated apoptosis induced by STZ, suggesting the involvement of oxidative stress. Flow cytometric assessment on the level of intracellular peroxides using fluorescent probe 2'7'-dichlorofluorescein diacetate (DCF-DA) confirmed that STZ (46%) induced an intracellular oxidative stress in RINm5F cells, which was suppressed by SPEt (21%). In addition, SPEt also reduced (33%) the STZ-induced apoptosis (72%) in RINm5F cells indicating the mode of protection of SPEt on RIN m5Fcells, islets, and pancreatic beta-cell mass (histopathological observations). Present study thus confirms antihyperglycemic effect of SPEt and also demonstrated the consistently strong antioxidant properties of Scoparia dulcis used in the traditional medicine.  相似文献   

13.
Oxidative stress has been shown to be implicated in the pathogenesis of central nervous system injuries such as cerebral ischemia and trauma, and chronic neurodegenerative diseases. In vitro studies show that oxidative stress, particularly peroxynitrite, could trigger DNA strand breaks, which lead to the activation of repairing enzymes including Poly(ADP-ribose) Polymerase-1 (PARP-1). As excessive activation of this enzyme induces cell death, we examined whether such a cascade also occurs in vivo in a model of oxidative stress in rat brain. For this purpose, the mitochondrial toxin malonate, which promotes free radical production, was infused into the left striatum of rats. Immunohistochemistry showed that 3-nitrotyrosine, an indicator of nitrosative stress, and poly(ADP-ribose), a marker of poly(ADP-ribose)polymerase-1 activation, were present as early as 1 h after malonate, and that they persisted for 24 h. The PARP inhibitor, 3-aminobenzamide, significantly reduced the lesion and inhibited PARP-1 activation induced by malonate. These results demonstrate that oxidative stress induced in vivo in the central nervous system leads to the activation of poly(ADP-ribose)polymerase-1, which contributes to neuronal cell death.  相似文献   

14.
Neurodegenerative diseases share two common features: enhanced oxidative stress and cellular inability to scavenge structurally damaged abnormal proteins. Pathogenesis of polyglutamine (poly(Q)) diseases involves increased protein misfolding, along with ubiquitin and chaperon protein-containing nuclear aggregates. In spinocerebellar ataxia, the brain and retina undergo degeneration. Neuroprotectin D1 (NPD1) is made on-demand in the nervous system and retinal pigment epithelial (RPE) cells in response to oxidative stress, which activates prosurvival signaling via regulation of gene expression and other processes. We hypothesized that protein misfolding-induced proteotoxic stress triggers NPD1 synthesis. We used ARPE-19 cells as a cellular model to assess stress due to ataxin-1 82Q protein expression and determine whether NPD1 prevents apoptosis. Ectopic ataxin-1 expression induced RPE cell apoptosis, which was abrogated by 100 nm docosahexaenoic acid, 10 ng/ml pigment epithelium-derived factor, or NPD1. Similarly, NPD1 was protective in neurons and primary human RPE cells. Furthermore, when ataxin-1 82Q was expressed in 15-lipoxygenase-1-deficient cells, apoptosis was greatly enhanced, and only NPD1 (50 nm) rescued cells from death. NPD1 reduced misfolded ataxin-1-induced accumulation of proapoptotic Bax in the cytoplasm, suggesting that NPD1 acts by preventing proapoptotic signaling pathways from occurring. Finally, NPD1 signaling interfered with ataxin-1/capicua repression of gene expression and decreased phosphorylated ataxin-1 in an Akt-independent manner, suggesting that NPD1 signaling modulates formation or stabilization of ataxin-1 complexes. These data suggest that 1) NPD1 synthesis is an early response induced by proteotoxic stress due to abnormally folded ataxin-1, and 2) NPD1 promotes cell survival through modulating stabilization of ataxin-1 functional complexes and pro-/antiapoptotic and inflammatory pathways.  相似文献   

15.
Doxorubicin (DOX) is a potent antitumor antibiotic drug known to cause severe cardiac toxicity. Moreover, its adverse effects were found to be extended to the cerebral tissue. Several mechanisms for this toxicity have been ascribed. Currently, one of the most accepted mechanisms is through free radicals; however, the exact role of nitric oxide (NO) is still unclear. Accordingly, a NO-synthase inhibitor with some antioxidant property, aminoguanidine (AG), was selected to examine its potential protective effect against DOX-induced toxicity. Male Wistar albino rats (150-200 g) were allocated into a normal control group, DOX-induced toxicity group, and DOX + AG-treated group. DOX was injected i.p. at a dose of 10 mg/kg divided into four equal injections over a period of 2 weeks. AG was injected i.p. at a dose of 100 mg/kg 1 h before each DOX injection. The animals were sacrificed 24 h after the last DOX injection and the following parameters were measured: serum lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) activities, cardiac and cerebral contents of malondialdehyde (MDA), conjugated diene (CD), glutathione (GSH), NO, and cytosolic calcium, as well as superoxide dismutase (SOD) and glutathione peroxidase (GSHP(X)) activities. Cardiotoxicity was manifested by a marked increase in serum LDH and CPK in addition to the sharp increase in MDA reaching eightfolds the basal level. This was accompanied by significant increase in CD, NO, cytosolic calcium, SOD, and GSHP(X) content/activity by 69, 85, 76, 125, and 41% respectively as compared to normal control. On the other hand, GSH was significantly depressed. In brain, only significant increase in MDA and GSHP(X) and decrease in GSH were obtained but to a lesser extent than the cardiac tissue. AG treatment failed to prevent the excessive release of cardiac enzymes; however, it alleviated the adverse effects of DOX in heart. AG administration resulted in marked decrease in the elevated levels of MDA, NO, SOD, and GSHP(X), however, MDA level was still pathological. The altered parameters in brain were restored by AG. It is concluded that, AG could not provide complete protection against DOX-induced toxicity. Therefore, it is recommended that, maintenance of the endogenous antioxidant, GSH, and regulation of calcium homeostasis must be considered, rather than NO formation, to guard against DOX-induced toxicity.  相似文献   

16.
The capacity of mesenchymal stem cells (MSCs) to survive and engraft in the target tissue may lead to promising therapeutic effects. However, the fact that the majority of MSCs die during the first few days following transplantation complicates cell therapy. Hence, it is necessary to strengthen the stem cells to withstand the rigors of the microenvironment to improve the efficacy of cell therapy. In this study, we manipulated MSCs to express a cytoprotective factor, heme oxygenase-1 (HO-1), to address this issue. Full-length cDNA of human HO-1 was isolated and cloned into TOPO vector by TOPO cloning reaction. Then, the construct was ligated to gateway adapted adenovirus expression vector by LR recombination reaction. Afterwards, the recombinant virus expressing HO-1 was produced in appropriate mammalian cell line and used to infect MSCs. The HO-1 engineered MSCs were exposed to hypoxic and oxidative stress conditions followed by evaluation of the cells’ viability and apoptosis. Transient expression of HO-1 was detected within MSCs. It was observed that HO-1 expression could protect MSCs against cell death and the apoptosis triggered by hypoxic and oxidative stress conditions. The MSCs-HO-1 retained their ability to differentiate into adipogenic, chondrogenic, or osteogenic lineages. These findings could be applied as a strategy for prevention of graft cell death in MSCs-based cell therapy and is a good demonstration of how an understanding of cellular stress responses can be used for practical applications.  相似文献   

17.
Diabetic patients reveal significant disorders, such as nephropathy, cardiomyopathy, and neuropathy. As oxidative stress and inflammation seem to be implicated in the pathogenesis of diabetic brain, we aimed to investigate the effects of caffeic acid phenethyl ester (CAPE) on oxidative stress and inflammation in diabetic rat brain. Diabetes was induced by a single dose of streptozotocin (45 mg kg−1, i.p.) injection into rats. Two days after streptozotocin treatment 10 μM kg−1 day−1 CAPE was administrated and continued for 60 days. Here, we demonstrate that CAPE significantly decreased the levels of nitric oxide and malondialdehyde induced by diabetes, and the activities of catalase, glutathione peroxidase, and xanthine oxidase in the brain. However, glutathione levels were increased by CAPE. The mRNA expressions of tumor necrosis factor (TNF)-α and interferon (IFN)-γ, and inducible nitric oxide synthase (iNOS) were remarkably enhanced in brain by diabetes. CAPE treatments significantly suppressed these inflammatory cytokines (about 70% for TNF-α, 26% for IFN-γ) and NOS (completely). Anti-inflammatory cytokine IL-10 mRNA expression was not affected by either diabetes or CAPE treatments. In conclusion, diabetes induces oxidative stress and inflammation in the brain, and these may be contributory mechanisms involved in this disorder. CAPE treatment may reverse the diabetic-induced oxidative stress in rat brains. Moreover, CAPE reduces the mRNA expressions of TNF-α and IFN-γ in diabetic brain; suggesting CAPE suppresses inflammation as well as oxidative stress occurred in the brain of diabetic patients.  相似文献   

18.
19.
20.
Several substances related to the neurodegenerative diseases of Alzheimer and Parkinson, such as hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1-42, have been shown to induce apoptosis in tumoral cell lines and rat neurons but not in human neurons. Moreover, the role of mitochondria (membrane potential) during neuronal apoptosis is still a matter of debate. We present here, for the first time, in cultured human cortical neurons that the DNA fragmentation induced by these substances was preceded by a decrease of the mitochondrial membrane potential. We have also examined the antiapoptotic effect of the antioxidants glutathione, N -acetyl-cysteine and ascorbic acid. All these antioxidants inhibited the apoptosis induced by hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1-42, since they were able to inhibit completely the mitochondrial membrane potential depolarization and the DNA fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号