首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular localization and distribution of the ROMK protein in rat liver and heart was studied by the electron microscopy of ultrathin sections using the antibodies against the ROMK channel protein, one of the contenders for the role of mitochondrial ATP-dependent potassium channel. In rat heart and liver tissues, the ROMK protein is localized on the membranes of mitochondrial cristae but differently distributed in hepatocytes and cardiomyocytes. In hepatocytes, colloidal gold particles were rather evenly distributed on the membranes of mitochondrial cristae. In cardiomyocytes, the number of granules was considerably lower than in hepatocytes, and they were also localized on the membranes of mitochondrial cristae and confined only by the center of these organelles.  相似文献   

2.
Light microscopic examination of rat and mouse tissues incubated in a medium containing 3,3'-diaminobenzidine (DAB) and catalase revealed that cells known to possess abundant mitochondria (hepatocytes, cardiomyocytes, renal proximal and distal tubular cells, parietal cells of gastric mucosa, and retinal photoreceptor cells) were stained with different intensity: from moderate (parietal cells, cardiomyocytes, renal distal tubular cells) to weak (hepatocytes, renal proximal tubular cells) or even negative (photoreceptors). When exogenous cytochrome c was added to the incubation medium, all these cells displayed quite uniform, strong staining, indicating a comparable activity of cytochrome oxidase. Since DAB is oxidized directly by cytochrome c which in turn undergoes reoxidation by cytochrome oxidase, the observed differences of staining intensity in the absence of exogenous cytochrome c are postulated to result from different content of reactive endogenous cytochrome c in mitochondria of the investigated cells.  相似文献   

3.
Some improvement has been made of the Belov et al. (1975) method of alkaline dissociation of tissues. No cell loss occurs during cell suspension preparation or other procedures. The improved method was shown to be suited for determination of absolute numbers of cardiomyocytes and hepatocytes. Comparison of the living and dissociated hepatocytes revealed preservation of the total cell dry weight and DNA content (classes of ploidy) in the cells treated with formol and concentrated alkali. The method is recommended for studying the cell number, weight, ploidy and mitoses, and for DNA autoradiography.  相似文献   

4.
Light and electron microscopy and morphometry revealed an age-related increase in the average size of hepatocytes and their nuclei in 24- and 30-month-old rats compared to 8-month-old animals, the density of hepatocytes distribution per area unit being decreased. In 24-month-old rats the number of binuclear hepatocytes increased with a subsequent decrease in their number in 30-month-old animals, which accounted for the shift in regeneration processes during ageing to predominantly intracellular one. The number of sinusoidal cells per area unit in three age groups was statistically similar. The results of morphometry and electron microscopy suggest that the compensatory-adaptive processes during hepatocyte ageing were mediated by intracellular regeneration, which led to cellular and nuclear hypertrophy similar to that observed in cells of static population (neurons, cardiomyocytes).  相似文献   

5.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   

6.
Beyond their fundamental role in energy metabolism, mitochondria perform a great variety of other important functions (e.g. in Ca2+ homeostasis, apoptosis, thermogenesis, etc.), thus suggesting their region-specific specializations and intracellular heterogeneity. Although mitochondrial functional heterogeneity has been demonstrated for several cell types, its origin and role under physiological and, in particular, pathophysiological conditions, where the extent of heterogeneity may significantly increase, remain to be elucidated. The present work thus investigated the static and dynamic heterogeneity of mitochondria and mitochondrial function in various cell types in which mitochondria may cope with specific functions including cardiomyocytes, hepatocytes and some cultured carcinoma cells. Modern confocal and two-photon fluorescent microscopy was used for the investigation and direct imaging of region-specific mitochondrial function and heterogeneity. Analysis of the autofluorescence of mitochondrial flavoproteins in hepatocytes and carcinoma cells permitted significant intracellular heterogeneity of mitochondrial redox state to be demonstrated. Comparative homogeneity and clear colocalization of mitochondrial flavoproteins, membrane potential and calcium-sensitive probes were observed in both isolated cardiomyocytes and permeabilized myocardial fibers. After ischemia reperfusion, however, or under conditions of substrate deprivation, significant heterogeneity of all these parameters was detected. Some methodological issues, mechanistic aspects, possible metabolic consequences of mitochondrial functional heterogeneity and its impact under pathological conditions are discussed.  相似文献   

7.
The secretory phospholipase A2 (sPLA2) family in mammals contains more than 10 enzymes. In this study, we examined by immunohistochemistry the localization of six sPLA2s (IIA, IID, IIE, IIF, V and X) in human heart, kidney, liver and stomach. In normal hearts, sPLA2-IIA was detected in coronary vascular smooth muscle cells (VSMC) and sPLA2-V in cardiomyocytes beneath the endocardium. In infarcted hearts, expression of these two enzymes was markedly increased in damaged cardiomyocytes, and expression of sPLA2-IID and-IIE, which was undetectable in normal hearts, was elevated in damaged cardiomyocytes and VSMC, respectively. In infarcted kidneys, sPLA2-IIA and-V were markedly induced in the uriniferous tubular epithelium. In livers affected by viral hepatitis, sPLA2-IIA and-V were expressed in hepatocytes with fatty degeneration. In the gastric glands exhibiting intestinal metaplasia, sPLA2-IIA was localized in the glandular base, sPLA2-IID and-V in the glandular body epithelium, sPLA2-IIE and-IIF in goblet cells in the foveolar epithelium, and sPLA2-X in both glandular body epithelial cells and foveolar epithelial goblet cells. In the gastric submucosal tissues, sPLA2-IIA and-IIE were located in VSMC and sPLA2-V was in the interstitial fibroblasts. In addition, sPLA2-IIA,-IIE,-IIF and-X were highly expressed in gastric signet ring cell carcinoma. Thus, individual sPLA2s exhibit unique cellular localizations in each tissue, suggesting their distinct roles in pathophysiology.  相似文献   

8.
Rats trained to intermittent normobaric hypoxia (INH) developed an increase of the glycogen contents in the heart and liver parenchymatous cells. Fatty acids seem to be the main source for synthesis of the intracellular glycogen. The intracellular transformation of the lipid energy substrate into the carbohydrates maintains the energy homeostasis in hepatocytes and cardiomyocytes during hypoxic intervals of the INH thus creating the necessary conditions. This kind of regulating the substance supply of the cell energy supports the organism stability under various effects.  相似文献   

9.
The electron microscopic study of thin sections of rat liver and heart using commercial specific antibodies against KIR.6.2 and secondary antibodies conjugated with colloidal gold was performed. It was found that the gold-labeled protein is localized in mitochondria of cardiomyocytes and hepatocytes but not in rough and smooth endoplasmic reticulum of hepatic cells and myofibrils of myocardium. In rat heart and liver mitochondria, the gold label was mainly located in mitochondrial cristae and was not found in mitochondrial matrix and intermembrane space. The data indicate that in heart and liver mitochondria there exists a protein similar in structure to the channel-forming subunit of a cytoplasmic potassium channel, KIR6.2. This is also supported by the presence of common modulators of cytoplasmic and mitochondrial ATP-dependent potassium channels. A possible role of the protein as a subunit of the mitochondrial ATP-dependent potassium channel is discussed.  相似文献   

10.
pEGFP-N1质粒转染乳鼠心肌细胞的分布及效率   总被引:3,自引:0,他引:3  
目的: 研究pEGFP-N1质粒转染心肌细胞的分布及效率.方法: 培养乳鼠心肌细胞,根据乳鼠心肌细胞的不同生长时间(1~3 d)进行pEGFP-N1质粒转染心肌细胞的实验研究.结果: 乳鼠心肌细胞生长1 d时,pEGFP-N1质粒转染心肌细胞的效率显著高于乳鼠心肌细胞生长2 d、3 d时;pEGFP-N1质粒转染心肌细胞后EGFP均匀地充满胞浆和胞核.结论: pEGFP-N1质粒转染乳鼠心肌细胞的效率与心肌细胞的生长期有关;EGFP在心肌细胞中均匀分布于胞浆和胞核.  相似文献   

11.
Summary Glycogen phosphorylase activity has been demonstrated at the ultrastructural level in liver and heart tissue of fasted rats. Unfixed cryostat sections were incubated by mounting them on a semipermeable membrane stretched over a gelled incubation medium. The medium contained a high concentration of glucose 1-phosphate which enables indirect detection of glycogen phosphorylase activity on the basis of the synthesis of glycogen. Tissue fixation, dehydration and embedding for electron microscopical study were performed after the incubation had been completed. The ultrastructure of both liver and heart tissue was rather well preserved. Glycogen granules resulting from glycogen phosphorylase activity were found in the cytoplasmic matrix of both hepatocytes and cardiomyocytes; no relationship with membranous structures could be detected. It is concluded that the semipermeable membrane method is well suited for localizing cytosolic enzyme activities at the ultrastructural level without prior tissue fixation; this opens further perspectives for correlations between histochemical and biochemical data.  相似文献   

12.
Egr-1 is an immediate early gene that couples short-term changes in the extracellular milieu to long-term changes in gene expression. Under in vitro conditions, the Egr-1 gene is expressed in many cell types and is induced by a wide variety of extracellular signals. The mechanisms by which the Egr-1 gene is regulated in vivo remain poorly understood. In this study, we have generated transgenic mice with a construct containing 1200 bp of the mouse Egr-1 promoter coupled to nuclear localized LacZ. In multiple independent lines of mice, reporter gene expression was detected in subsets of endothelial cells, vascular smooth-muscle cells, cardiomyocytes, neurons, and hepatocytes. This pattern closely resembled that of the endogenous gene. After partial hepatectomy, reporter gene activity was upregulated between two- and fivefold in regenerating livers. Taken together, these findings suggest that the Egr-1 promoter contains information for appropriate spatial and temporal expression in vivo.  相似文献   

13.
BACKGROUND: Adenoviral gene transfer has been shown to be effective in cardiac myocytes in vitro and in vivo. A major limitation of myocardial gene therapy is the extracardiac transgene expression. METHODS: To minimize extracardiac gene expression, we have constructed a tissue-specific promoter for cardiac gene transfer, namely, the 250-bp fragment of the myosin light chain-2v (MLC-2v) gene, which is known to be expressed in a tissue-specific manner in ventricular myocardium followed by a luciferase (luc) reporter gene (Ad.4 x MLC250.Luc). Rat cardiomyocytes, liver and kidney cells were infected with Ad.4 x MLC.Luc or control vectors. For in vivo testing, Ad.4 x MLC250.Luc was injected into the myocardium or in the liver of rats. Kinetics of promoter activity were monitored over 8 days using a cooled CCD camera. RESULTS: In vitro: By infecting hepatic versus cardiomyocyte cells, we found that the promoter specificity ratio (luc activity in cardiomyocytes per liver cells) was 20.4 versus 0.9 (Ad.4 x MLC250.Luc vs. Ad.CMV). In vivo: Ad.4 x MLC250.Luc significantly reduced luc activity in liver (38.4-fold), lung (16.1-fold), and kidney (21.8-fold) versus Ad.CMV (p =.01); whereas activity in the heart was only 3.8-fold decreased. The gene expression rate of cardiomyocytes versus hepatocytes was 7:1 (Ad.4 x MLC.Luc) versus 1:1.4 (Ad.CMV.Luc). DISCUSSION: This new vector may be useful to validate therapeutic approaches in animal disease models and offers the perspective for selective expression of therapeutic genes in the diseased heart.  相似文献   

14.
为了研究重组人B型钠尿肽(recombinant human B-type natriuretic peptide, rhBNP)对减轻大鼠心肌缺血再灌注损伤的机制,本研究采用尾部静脉注射的方法对I/R大鼠成功建模,并设计注射生理盐水(I/R组)、rhBNP (I/R+rhBNP组)和假手术组CK组3个处理组,通过TUNEL法检测各处理组大鼠心肌细胞的凋亡情况。本实验还用生理和生化方法检测了心肌细胞中超氧化物歧化酶(superoxidedismutase, SOD)和丙二醛(malondialdehyde, MDA)活性和含量的变化情况,用RT-PCR和免疫印迹方法检测了Bax/Bcl-2信号通路中基因和蛋白表达水平变化。结果表明,rhBNP可以提高I/R大鼠心肌细胞中SOD酶活性,同时使MDA含量降低,表明rhBNP能够保护心肌细胞,使细胞受损程度减小。与此同时本研究发现rhBNP处理后大鼠心肌细胞中Bax基因和蛋白的表达量显著下调,且Bcl-2基因和蛋白的表达显著上调,从而使I/R大鼠心肌细胞的凋亡数目减少,缩小心肌坏死的面积。本研究表明rhBNP可以通过调节Bax/Bcl-2信号通路、提高SOD酶活性使I/R大鼠心肌细胞内MDA含量减少,以及心肌细胞凋亡数目减少,从而有效地减轻大鼠心肌缺血再灌注损伤,以达到保护心肌细胞的目的。  相似文献   

15.
A significant amount of cardiomyocytes in subendocardial region survive from ischemic insults. In order to understand the mechanism by which these cardiomyocytes survive, the present study was undertaken to examine changes in these surviving cardiomyocytes and their extracellular matrix. Male C57BL/6 mice aged 8–12 weeks old were subjected to a permanent left anterior descending coronary artery ligation to induce ischemic injury. The hearts were collected at 1, 4, 7, or 28 days after the surgery and examined by histology. At day 1 after left anterior descending ligation, there was a significant loss of cardiomyocytes through apoptosis, but a proportion of cardiomyocytes were surviving in the subendocardial region. The surviving cardiomyocytes were gradually changed from rod-shaped to round-shaped, and appeared disconnected. Connexin 43, an important gap junction protein, was significantly decreased, and collagen I and III deposition was significantly increased in the extracellular matrix. Furthermore, lysyl oxidase, a copper-dependent amine oxidase catalyzing the cross-linking of collagens, was significantly increased in the extracellular matrix, paralleled with the surviving cardiomyocytes. Inhibition of lysyl oxidase activity reduced the number of surviving cardiomyocytes. Thus, the extracellular matrix remodeling is correlated with the deformation of cardiomyocytes, and the electrical disconnection between the surviving cardiomyocytes due to connexin 43 depletion and the increase in lysyl oxidase would help these deformed cardiomyocytes survive under ischemic conditions.  相似文献   

16.
细胞的直接重编程是指将一种终末分化细胞直接转变为另一种终末分化细胞,这一转变不经过诱导多能干细胞阶段和去分化、再分化等过程。最近的一系列研究结果已经证明了这一研究方法的可行性,这些研究进展不仅为重编程的分子机制研究提供了新视角,也为加速重编程细胞的临床应用带来了希望。本文综述了将成纤维细胞直接重编程为神经细胞、肝细胞、心肌细胞及造血细胞的研究进展,探讨了这一研究方法存在的问题以及将来在该领域的研究方向。  相似文献   

17.
The proliferation, structural differentiation, and capacity of association of human ES cell-derived cardiomyocytes were assessed in culture and in extracardiac graft tissues. Embryoid body (EB) outgrowths having cardiomyocytes, and their transplants in mice retroperitoneum or renal subcapsular region were analyzed mainly by immunochemistry. During the culture of EB outgrowths, colonies of cardiomyocytes grew in size exhibiting synchronized beatings. Subcellular structures of those cardiomyocytes involved in the contraction, hormone production, and intercellular integration differentiated with distinct immunoreactivity for constituent proteins/peptides. Judging from PCNA staining, proliferation potential was maintained in part for more than 70 days. In teratoma tissues on post-transplantation Day 7, cardiomyocytes maintained their integration with connexin 43 and cadherin at their junctions. They partly exhibited strong PCNA reactivity. On Day 28, large part of the cardiomyocytes lost their association, dispersing among non-cardiac cells without discernible cadherin reactivity. Proliferation potential was generally low irrespective of their tissue diversity. From these results, structural differentiation and active proliferation of human ES cell-derived cardiomyocytes occurred in vitro, maintaining their association. When developed in extracardiac tissues, however, the cardiomyocytes showed low proliferation potential and reduced cellular integration. This leads to the proposal that some procedure will be necessary to accelerate or maintain the proliferation of cardiomyocytes in vivo.  相似文献   

18.
The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p < 0.0001). The data also show that a cell index decrease is not always associated with cytotoxicity effects and that there are some confounding factors that can affect the analysis. Finally, another drawback is that the correlation analysis between cellular impedance measurements and classical toxicity endpoints has been performed on a limited number of compounds. Overall, despite some limitations, the RTCA technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.  相似文献   

19.
尾加压素对新生大鼠心肌细胞一氧化氮合成的影响   总被引:6,自引:0,他引:6  
Li L  Yuan WJ  Pan XJ  Wang WZ  Qiu JW  Tang CS 《生理学报》2002,54(4):307-310
应用半定量逆转录-多聚酶链反应法,观察尾加压素(urotensin Ⅱ,UⅡ)对培养的新生SD大鼠心肌细胞内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)mRNA表达的影响,并测定UⅡ对心肌细胞内一氧化氮合酶(nitric oxide synthase,NOS)活性和一氧化氮(nitric oxide,NO)释放的影响。结果显示:UⅡ抑制培养的新生大鼠心肌细胞eNOS mRNA表达、抑制NOS的活性及NO释放;0.1μmol/L浓度的UⅡ呈时间依赖性抑制心肌细胞NOS的活性及NO生成。上述实验结果提示UⅡ的心血管作用可能与NO合成系统有关。  相似文献   

20.

Background  

It is well known that cytotoxic factors, such as lipopolysaccharides, derange nitrogen metabolism in hepatocytes and nitric oxide (NO) is involved among the other factors regulating this metabolic pathway. Hepatocytes have been shown to express large levels of NO following exposure to endotoxins, such as bacterial lipopolysaccharide and/or cytokines, such as tumour necrosis factor-α (TNFα), interleukin-1. The control role of arginine in both urea and NO biosynthesis is well known, when NO is synthesized from arginine, by the NOS reaction, citrulline is produced. Thus, the urea cycle is bypassed by the NOS reaction. Many authors demonstrated in other cellular types, like cardiomyocytes, that bradykinin caused the increase in reactive oxygen species (ROS) generation. The simultaneous increase of NO and ROS levels could cause peroxynitrite synthesis, inducing damage and reducing cell viability. The aim of this research is to study the effect of bradykinin, a proinflammatory mediator, on cell viability and on urea production in cultures of rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号