首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abstract Two alternative hypotheses for the origin of butterflies in the Australian Region, that elements dispersed relatively recently from the Oriental Region into Australia (northern dispersal hypothesis) or descended from ancient stocks in Gondwana (southern vicariance hypothesis), were tested using methods of cladistic vicariance biogeography for the Delias group, a diverse and widespread clade in the Indo‐Australian Region. A phylogenetic hypothesis of the twenty‐four species‐groups recognized currently in Delias and its sister genus Leuciacria is inferred from molecular characters generated from the nuclear gene elongation factor‐1 alpha (EF‐1α) and the mitochondrial genes cytochrome oxidase subunits I and II (COI/COII) and NADH dehydrogenase 5 (ND5). Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined dataset (3888 bp, 1014 parsimony informative characters) confirmed the monophyly of Delias and recovered eight major lineages within the genus, informally designated the singhapura, belladonna, hyparete, chrysomelaena, eichhorni, cuningputi, belisama and nigrina clades. Species‐group relationships within these clades are, in general, concordant with current systematic arrangements based on morphology. The major discrepancies concern the placement of the aganippe, belisama and chrysomelaena groups, as well as several species‐groups endemic to mainland New Guinea. Two species (D. harpalyce (Donovan), D. messalina Arora) of uncertain group status are currently misplaced based on strong evidence of paraphyly, and are accordingly transferred to the nigrina and kummeri groups, respectively. Based on this phylogeny, a revised systematic classification is presented at the species‐group level. An historical biogeographical analysis of the Delias group revealed that the most parsimonious reconstruction is an origin in the Australian Region, with at least seven dispersal events across Wallacea to the Oriental Region. The eight major clades of Delias appear to have diverged rapidly following complete separation of the Australian plate from Gondwana and its collision with the Asian plate in the late Oligocene. Further diversification and dispersal of Delias in the Miocene–Pliocene are associated with major geological and climatic changes that occurred in Australia–New Guinea during the late Tertiary. The ‘out‐of‐Australia’ hypothesis for the Delias group supports an origin of the Aporiina in southern Gondwana (southern vicariance hypothesis), which proposes that the ancestor of Delias + Leuciacria differentiated vicariantly on the Australian plate.  相似文献   

2.
3.
Aim We study the Neotropical poison frogs of the genus Dendrobates Wagler, 1830 in order to clarify their phylogenetic relationships and biogeographical history. The genus Dendrobates is an excellent taxon for examining patterns of Neotropical diversification as the four major species groups appear to correspond roughly to distinct geographical regions: (1) trans‐Andean, (2) Andean foreland, (3) Brazilian Shield and (4) Guianan Shield/Central America. In order to test the agreement of five of the most prominent hypotheses of Amazonian diversification, phylogenetic patterns were examined for agreement with patterns predicted by these hypotheses. Location Central and South America Methods The phylogenetic relationships of the genus Dendrobates were examined from novel and existing (GenBank) sequences of four mitochondrial loci totalling c. 1400 bp from 40 specimens of 22 different species using maximum parsimony and Bayesian methods. Results were compared with traditional taxonomic arrangements by means of SH tests. Phylogenetic relationships and genetic distances were used to test the adequacy of various diversification hypotheses. Results Phylogenetic analyses support the restructuring of two species groups of Dendrobates and the creation of a new species group. Statistical tests of the traditional taxonomic arrangement indicate a significantly bad fit to the molecular data. This restructuring has important implications for the understanding of the historical biogeography of Dendrobates. Biogeographical patterns within this genus suggest that a complex interaction of biotic and abiotic factors since the Eocene have produced the diversity observed today. Main conclusions The current classification of Dendrobates into discrete species groups does not accurately reflect evolutionary history. Data presented here strongly support a monophyletic Brazilian Shield lineage whose members have previously been split among the quinquevittatus and tinctorius groups. Furthermore, previous attempts at elucidating the historical biogeography of this genus were compromised by incomplete sampling and conclusions drawn from a paraphyletic ingroup. Our findings demonstrate a role for numerous hypotheses of diversification (e.g. river, refuge, disturbance–vicariance) in the history of Dendrobates, supporting previous warnings about the dangers of over‐simplification in the study of Neotropical diversification.  相似文献   

4.
Three new species of the genus Tricliona are described from the Philippines and Borneo Island: T. bakeri sp. n., T. sandakana sp. n., and T. philippina sp. n. Stethotes aedilis Weise are transferred to the genus Cleoporus, and Stethotes ferruginea Weise, to Tricliona. Typophorus quadrimaculatus Baly is transferred to Cleoporus, and C. cruciatus Lefèvre is synonymized with it. The genus Coniomma Weise is redescribed. For each species, drawings of the genitalia are provided. The species of Cleoporus from the Philippines and all the species of the Tricliona ferruginea group are keyed.  相似文献   

5.
The 128 known native Hawaiian species of the tribe Platynini are analysed cladistically. Cladistic analysis is based on 206 unit-coded morphological characters, and also includes forty-one outgroup taxa from around the Pacific Rim. Strict consensus of the multiple equally parsimonious cladograms supports the monophyly of the entire species swarm. The closest outgroup appears to be the south-east Asian-Pacific genus Lorostema Motschulsky, whose species are distributed from India and Sri Lanka to Tahiti, supporting derivation of the Hawaiian platynines from a source in the western or south-western Pacific. The biogeographic relationships of the Hawaiian taxa are analysed using tree mapping, wherein items of error are minimized. The area cladogram found to be most congruent with the phylogenetic relationships, and most defensible based on underlying character data is {Kauai[Oahu(Hawaii{Lanai[East Maui(West Maui + Molokai)]})]}. This progressive vicariant pattern incorporates progressive colonization from Kauai, and vicariance of the former Maui Nui into the present islands of Molokai, Lanai, West Maui and East Maui. The evolution of flightlessness, tarsal structure, pronotal setation and bursal asymmetry are evaluated in the context of the cladogram. Brachyptery is a derived condition for which reversal is not mandated by the cladogram, although repeated evolution of reduced flight wings is required. Tarsal structure supports Sharp's (1903) recognition of Division 1 as a monophyletic assemblage, but exposes his Division 2 as a paraphyletic group requiring removal of the genus Colpocaccus Sharp. Pronotal setation is exceedingly homoplastic, and is not useful for delimiting natural groups. Left-right asymmetry of the bursa copulatrix reversed twice independently, resulting in mirror-image bursal configurations in B. rupicola and Prodisenochus terebratus of East Maui. The amount of character divergence is greater among species comprising Division 1 than among species of its sister group, the redefined Division 2. Based on superior fit of Division 1 relationships to the general biogeographic pattern, a greater speciation rate coupled with more extensive extinction is rejected as the cause for this greater divergence. Intrinsic differentiation in the processes underlying cuticular evolution appears to be more consistent with the observed biogeographic and morphological patterns.  相似文献   

6.
Aim To analyse the historical biogeography of the lichen genus Chroodiscus using a phenotype‐based phylogeny in the context of continental drift and evolution of tropical rain forest vegetation. Location All tropical regions (Central and South America, Africa, India, Southeast Asia, north‐east Australia). Methods We performed a phenotype‐based phylogenetic analysis and ancestral character state reconstruction of 14 species of the lichen genus Chroodiscus, using paup * and mesquite ; dispersal–vicariance analysis (DIVA) and dispersal–extinction–cladogenesis (DEC) modelling to trace the geographical origin of individual clades; and ordination and clustering by means of pc‐ord , based on a novel similarity index, to visualize the biogeographical relationships of floristic regions in which Chroodiscus occurs. Results The 14 species of Chroodiscus show distinctive distribution patterns, with one pantropical and one amphi‐Pacific taxon and 12 species each restricted to a single continent. The genus comprises four clades. DIVA and DEC modelling suggest a South American origin of Chroodiscus in the mid to late Cretaceous (120–100 Ma), with subsequent expansion through a South American–African–Indian–Southeast Asian–Australian dispersal route and late diversification of the argillaceus clade in Southeast Asia. Based on the abundance of extant taxa, the probability of speciation events in Chroodiscus is shown to be extremely low. Slow dispersal of foliicolous rain forest understorey lichens is consistent with estimated phylogenetic ages of individual species and with average lengths of biological species intervals in fungi (10–20 Myr). Main conclusions The present‐day distribution of Chroodiscus can be explained by vicariance and mid‐distance dispersal through the interconnection or proximity of continental shelves, without the need for recent, trans‐oceanic long‐distance dispersal. Phylogenetic reconstruction and age estimation for Chroodiscus are consistent with the ‘biotic ferry’ hypothesis: a South American origin and subsequent eastward expansion through Africa towards Southeast Asia and north‐eastern Australia via the Indian subcontinent. The present‐day pantropical distributions of many clades and species of foliicolous lichens might thus be explained by eastward expansion through continental drift, along with the evolution of modern rain forests starting 120 Ma, rather than by the existence of a hypothetical continuous area of pre‐modern rain forest spanning South America, Africa and Southeast Asia during the mid and late Cretaceous.  相似文献   

7.
Phylogenetic and biogeographical analyses were performed for the Plesiolebiasini, a group of 20 small and rare species of South American annual killifishes, some threatened with extinction, occurring in river basins of Brazil, Bolivia, Paraguay, and Argentina. The results of a maximum parsimony analysis of 142 morphological characters highly corroborate monophyly of the Plesiolebiasini. Monophyly of each plesiolebiasine genus is supported and Plesiolebias is hypothesized to be the sister group to a clade comprising the remaining plesiolebiasine genera (Papiliolebias, Pituna, Maratecoara, and Stenolebias), corroborating studies based on mitochondrial genes. The phylogenetic analysis supports sister group relationships between Papiliolebias and the clade containing Pituna, Maratecoara, and Stenolebias, and between Maratecoara and Stenolebias. The biogeographical analysis indicates a complex historical biogeographical scenario for plesiolebiasines. A vicariance event between the western Paraguay area and northern river basins may be related to the isolation of the Chaco region from the Amazon between the Late Oligocene and Early Miocene. A vicariance event involving the Paraguay River basin and northern rivers, and the multiple occurrence of area hybridism along the Araguaia depression are tentatively identified as a consequence of tectonic subsidence events occurring during the Pleistocene. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 131–148.  相似文献   

8.
A new species of Veturius (Veturius) Kaup from southern Colombia, Putumayo, lowland forests, is described and illustrated. V. paya n. sp. belongs to the South American “cephalotes” species group and is sister species of V. cephalotes (Le Peletier & Serville, 1825). Both species are distinguished by few characters of the head and thorax. They seem to be allopatric close to the western distributional limits of V. cephalotes. The endemism of V. paya n. sp. corresponds to a geographic vicariance in the axis of the Amazon Basin. An overview is given on the phylogeny and the chorology of the completed “cephalotes” species group.  相似文献   

9.
The mariculture of eucheumatoids (species of Kappaphycus and Eucheuma) in the Philippines has had a long history, dating back to the 1970s. Over this period, a number of varieties have been brought into domestication; some are now widely distributed and farmed in various regions of the country, but a significant number appear to have a more restricted distribution and are farmed only in certain areas. The taxonomy of many of these seaweed cultivars and their phylogenetic relationships still remain to be resolved at the specific and subspecific levels. In this study, two mitochondrial DNA markers, COI-5P region and cox2-3 intergenic spacer, were used to assess the genetic diversity of the farmed varieties and a few specimens collected from the wild. Analysis using haplotype networks revealed several new haplotypes for K. alvarezii, K. malesianus and K. striatus, mainly from specimens collected from eastern and southwestern regions of the Philippines. The inferred phylogenetic relationships based on both mtDNA markers resolved the identity of all the materials used in the study at the species level. We present molecular evidence that K. malesianus, in addition to K. alvarezii, K. cottonii, K. inermis, K. procrusteanus and K. striatus (and, hence, all currently recognized species of Kappaphycus) occurs in the Philippines. Collectively, these observations suggest that the Philippine archipelago has richer genetic diversity of farmed and wild Kappaphycus than do the other geographic regions, consistent with the hypothesis that the Philippines is, or is part of, the centre of Kappaphycus biodiversity in the world. These findings also reveal an untapped diversity that can potentially be exploited for improving the commercial production of these carrageenophytes.  相似文献   

10.
Phylogenetic relationships among chain-forming Cochlodinium species, including the harmful red tide forming dinoflagellate Cochlodinium polykrikoides, were investigated using specimens collected from coastal waters of Canada, Hong Kong, Japan, Korea, Malaysia, México, Philippines, Puerto Rico, and USA. The phylogenetic tree inferred from partial (D1–D6 regions) large subunit ribosomal RNA gene (LSU rDNA) sequences clearly differentiated between C. polykrikoides and a recently described species, Cochlodinium fulvescens. Two samples collected from the Pacific coasts of North America (British Columbia, Canada and California, USA) having typical morphological characters of C. fulvescens such as the sulcus located in the intermediate region of the cingulum, were closely related to C. fulvescens from western Japan in the phylogenetic tree. Cochlodinium polykrikoides formed a monophyletic group positioned as a sister group of the C. fulvescens clade with three well-supported sub-clades. These three clades were composed of (1) East Asian, including specimens collected from Hong Kong, western Japan, and southern Korea, (2) Philippines, from Manila Bay, Philippines and Omura Bay, Japan, and (3) American/Malaysian, from the Atlantic coasts of USA, the Pacific coast of México, Puerto Rico, and Borneo Island, Malaysia. Each of these clades is considered to be a so-called “ribotype” representing the population inhabiting each region, which is distinguished based on ribosomal RNA gene sequences in the species despite similarities in their morphological characters.  相似文献   

11.
Collado, G. A., Vila, I. & Méndez, M. A. (2011). Monophyly, candidate species and vicariance in Biomphalaria snails (Mollusca: Planorbidae) from the Southern Andean Altiplano. —Zoologica Scripta, 40, 613–622. The landscape of the Neotropical southern Andean Altiplano is characterized by a succession of closed basins originated from the Miocene to the Holocene. In this region, the number of species and phylogenetic relationships among freshwater snails of the genus Biomphalaria are uncertain. Here we obtained sequences of the mitochondrial gene cytochrome oxidase subunit I from 17 Altiplano populations, including topotypes of three nominal species, which were analyzed together with published sequences of the genus using different methods of phylogenetic reconstruction and a species of Helisoma as outgroup. The Altiplano populations conform a monophyletic group whose sister group is the Neotropical species Biomphalaria peregrina. Within this clade we recovered four main lineages well supported and congruent with geographical distributions. One clade includes topotypes restricted exclusively to the Ascotán basin, the type locality of the nominal species Biomphalaria crequii. A second clade includes sequences that correspond to topotypes restricted to the Isluga and Carcote basins, the type localities of the nominal species Biomphalaria aymara and Biomphalaria costata, respectively. Two monophyletic groups clustered snails restricted to several aquatic systems within the Caquena and Lauca basins, which may represent candidate species. The branching pattern of the sequences suggests that in the diversification of these snails, events of vicariance inferred in the Pleistocene have predominated over dispersal phenomena.  相似文献   

12.
Aim Colonization of the Philippines from Taiwan or neighbouring areas of the Asian mainland has been proposed as an important source of diversity for some plant and animal groups in the northern Philippines. Previous inferences, however, were based on taxonomic groupings, which sometimes fail to reflect phylogenetic history. Here, we test for colonization of the Philippines from the north in a group of shrews (Soricomorpha: Crocidura) using explicit inferences of evolutionary history. Location Southeast Asia. Methods We estimate the phylogenetic relationships of populations of shrews from Batan and Sabtang islands in the northern Philippines using DNA sequences from two mitochondrial genes and three nuclear loci. We employ topology tests to evaluate the possible relationships of these shrews to species from throughout Southeast Asia. Results We find conclusive evidence that shrews from Batan and Sabtang are closely related to Crocidura tanakae from Taiwan and additional specimens from the Asian mainland. Bayesian and frequentist topology tests using alignments of individual loci strongly reject any notion that shrews from Batan and Sabtang are part of the main Philippine radiation of Crocidura, indicating that the northernmost Philippine islands were almost certainly colonized by shrews from Taiwan or mainland Asia. Main conclusions Our results provide the first compelling evidence for colonization of the Philippine archipelago by a terrestrial vertebrate via a northern route. Invasion of the northern Philippines by shrews, however, did not lead to further range expansion to more southerly parts of the Philippines. This study, combined with previous results, documents that Crocidura colonized the Philippines at least three times. However, only one of these invasions led to in situ speciation and ubiquity across the archipelago. Our findings are part of a growing body of literature suggesting that oceanic archipelagos are often colonized multiple times by groups of closely related species, and occasionally from multiple sources.  相似文献   

13.
Morphology, meristics, and molecular genetics tools were used to determine the species level identification of the most commonly landed sardine species in the Philippines. Results from this study indicated that the historical and widely applied nomenclature of the Indian oil sardine, Sardinella longiceps, is incorrect and that this species is instead the Bali sardinella Sardinella lemuru. Developing an effective strategy for managing one of the Philippines most important commodity sardine species first requires accurate identification of this species. Results of this study provide needed information that is now being applied to emerging management policies.  相似文献   

14.
The easternmost known record of the slow loris,Nycticebus coucang, is Tawitawi, Philippines. A report of this species in Mindanao, 500 km northeast of Tawitawi, is based on a mislabeled specimen.  相似文献   

15.
Aim To elucidate the role of vicariance versus dispersal at the microevolutionary scale in annual killifish populations belonging to the Austrolebias bellottii species complex (Rivulidae). Within this complex, A. bellottii and A. apaii have low vagility and occur widely within the study area, making them excellent models for testing biogeographic hypotheses of differentiation. Location South America, in the Paraná–Uruguay–La Plata river basin. Methods Molecular data and morphometric analyses were used to reconstruct the phylogeographic history and morphological variation of 24 populations of two taxa of the A. bellottii species complex. Phylogenetic analyses using maximum likelihood (ML) and Bayesian inference (BI) model‐based methods, estimates of clade divergence times implemented in beast , non‐metric multidimensional scaling, analysis of molecular variance results, and morphological analyses elucidated the role of vicariance versus dispersal hypotheses in population differentiation in the aforementioned river basin. Results In the A. bellottii species complex from the Paraná–Uruguay–La Plata river basin, past allopatric fragmentation from vicariance events seems to be the most plausible scenario for diversification since the Late Miocene and more recently since the Plio‐Pleistocene. The Plio‐Pleistocene vicariance produced the differentiation of three major clades in A. bellottii populations. One clade from the eastern Uruguay River drainage was separated from another in western Uruguay and the Paraná–La Plata River drainages. A later vicariance event split populations to the south (lower Paraná–La Plata Basin) and north (middle Paraná) of the western Paraná River drainage. However, our results do not exclude the possibility of dispersal events among A. bellottii populations from both the Uruguay and Paraná river drainages, which could occur in these river basins during hypothesized connectivity cycles of the Late Pliocene and Pleistocene. Main conclusions Past allopatric fragmentation caused by different vicariance events seems to be the main driver of diversification in the A. bellottii species complex since the Plio‐Pleistocene. However, the current molecular data suggest that populations from both drainages of the Paraná–Uruguay rivers may have experienced cycles of connectivity during the Pleistocene, perhaps including multiple vicariance or dispersal events from populations located in the western lower Uruguay River drainage, which encompassed climatic and geological changes in the Paraná–Uruguay–La Plata Basin.  相似文献   

16.
Aim The complex palaeogeography of the Malesian archipelago, characterized by the evolution of an ever‐changing mosaic of terrestrial and marine areas throughout the Cenozoic, provides the geographic backdrop for the remarkable diversification of Malesian Begonia (> 450 species). This study aimed to investigate the origin of Malesian Begonia, the directionality of dispersal events within the Malesian archipelago and the impact of ancient water gaps on colonization patterns, and to identify drivers of diversification. Location Asia, Southeast Asia, Malesia. Methods Plastid DNA sequence data of representatives of all families of the Cucurbitales and Fagales (matK, rbcL, trnL intron, trnL–F spacer, 4076 aligned positions, 92 taxa) and a sample of all major Asian Begonia sections (ndhA intron, ndhF–rpl32 spacer, rpl32–trnL spacer, 4059 aligned positions, 112 taxa) were analysed under an uncorrelated‐rates relaxed molecular clock model to estimate the age of the Begonia crown group divergence and divergence ages within Asian Begonia. Ancestral areas were reconstructed using a likelihood approach implementing a dispersal–extinction–cladogenesis model, and with a Bayesian approach to dispersal–vicariance analysis. Results The results indicated an initial diversification of Asian Begonia in continental Asia in the Miocene, and subsequent colonization of Malesia by multiple lineages. There was support for at least six independent dispersal events from continental Asia and western Malesia to Wallacea dating from the late Miocene to the Pleistocene. Begonia section Petermannia (> 270 species) originated in Western Malesia, and subsequently dispersed to Wallacea, New Guinea and the Philippines. Lineages within this section diversified rapidly since the Pliocene, coinciding with rapid orogenesis on Sulawesi and New Guinea. Main conclusions The predominant trend of Begonia dispersals between continental Asia and Malesia, and also within Malesia, has been from west to east. The water bodies separating the Sunda Shelf region from Wallacea have been porous barriers to dispersal in Begonia following the emergence of substantial land in eastern Malesia from the late Miocene onwards. We hypothesize two major drivers of the diversification of Malesian Begonia: (1) the formation of topographical heterogeneity and the promotion of microallopatry by orogenesis in the Pliocene and Pleistocene; and (2) cyclic vicariance by frequent habitat fragmentations and amalgamations due to climate and sea‐level fluctuations during the Pleistocene.  相似文献   

17.
Aim The aim is to use DNA sequence data to test between vicariance and long range dispersal (by floating seed-pods) explanations for the origin and range of the Edwardsia species of Sophora (Sophoreae: Papilionoideae: Leguminosae). Location This group is widely distributed around the South Pacific and into the South Atlantic on both continental fragments and oceanic islands. Methods DNA sequences from an intergene region (atpB-rbcL) of the chloroplast were determined for twelve taxa (including outgroups) and used to test these hypotheses. Sophora fossils were used to calibrate the evolutionary tree. Results The Edwardsia group of Sophora appears monophyletic and is well differentiated from other Sophora. However, the genetic difference between species within the South Pacific and to the South Atlantic is very low. Main conclusionsThe results eliminate vicariance explanations for this section of Sophora and strongly support an origin from other (non-Edwardsia) Sophora in the north-west Pacific. Dispersal appears initially to be to Tuvalu, Lord Howe Island, New Zealand, and subsequently across the South Pacific, probably within the last 2–5 million years. Dispersal of buoyant Sophora seeds to oceanic islands is the most likely explanation of its distributions. Fossil pollen dates in New Zealand are consistent with the conclusion.  相似文献   

18.
《Plant Ecology & Diversity》2013,6(5-6):379-387
Background: The disjunct distribution patterns of a taxon may arise when previously continuous distribution ranges are fragmented. The phenomena of vicariance and dispersal, together with hybridisation as an important source of genetic variation in natural populations, can play an important role for structuring the distribution of taxa.

Aims: We investigated the biogeographical relationships of the Iberian endemic plant Ranunculus angustifolius s.l. by reconstructing ancestral geographical distributions, using a combination of phylogenetic and distributional information.

Methods: Phylogenetic and network analyses of nuclear internal transcribed spacers and plastid sequence data (rpl32-trnL, rps16-trnQ, trnK-matK and ycf6-psbM) were used to infer vicariance and dispersal events.

Results: Phylogenetic and biogeographical analyses suggested that both dispersal and vicariance were important in creating the current disjunct distribution pattern. Some other factors, such as hybridisation, introgression and vicariance (or pseudovicariance), were important in the evolutionary history of the taxa R. angustifolius s.l.

Conclusions: Our results demonstrate the importance for analysing biogeographical patterns with the use of both nuclear and chloroplast DNA to infer the evolutionary history of plant species with a disjunct distribution. Our results show that phenomena such as dispersal, vicariance and pseudovicariance are not mutually exclusive.  相似文献   

19.
Aim Several recent studies have suggested that a substantial portion of today’s plant diversity in the Neotropics has resulted from the dispersal of taxa into that region rather than by vicariance. In general, three routes have been documented for the dispersal of taxa onto the South American continent: (1) via the North Atlantic Land Bridge, (2) via the Bering Land Bridge, or (3) from Africa directly onto the continent. Here a species‐rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae) is used as a model to investigate these three hypotheses. Location The Neotropics. Methods The phylogenetic relationships within the long‐branch clade of Annonaceae were reconstructed (using maximum parsimony, maximum likelihood and Bayesian inference) in order to gain insight in the phylogenetic position of Guatteria. Furthermore, Bayesian molecular dating and Bayesian dispersal–vicariance (Bayes‐DIVA) analyses were undertaken. Results Most of the relationships within the long‐branch clade of Annonaceae were reconstructed and had high support. However, the relationship between the Duguetia clade, the XylopiaArtabotrys clade and Guatteria remained unclear. The stem node age estimate of Guatteria ranged between 49.2 and 51.3 Ma, whereas the crown node age estimate ranged between 11.4 and 17.8 Ma. For the ancestral area of Guatteria and its sister group, the area North America–Africa was reconstructed in 99% of 10,000 DIVA analyses, while South America–North America was found just 1% of the time. Main conclusions The estimated stem to crown node ages of Guatteria in combination with the Bayes‐DIVA analyses imply a scenario congruent with an African origin followed by dispersal across the North Atlantic Land Bridge in the early to middle Eocene and further dispersal into North and Central America (and ultimately South America) in the Miocene. The phylogenetically and morphologically isolated position of the genus is probably due to extinction of the North American and European stem lineages in the Tertiary.  相似文献   

20.
Li, J.T., Li, Y., Murphy, R.W., Rao, D.‐Q. & Zhang, Y.‐P. (2012). Phylogenetic resolution and systematics of the Asian tree frogs, Rhacophorus (Rhacophoridae, Amphibia). —Zoologica Scripta, 41, 557–570. The treefrog genus Rhacophorus, a large genus with 80 species, has a wide range, occurring eastward from India to China, Japan, South‐east Asia, the Greater Sunda Islands and the Philippines. The phylogenetic relationships and taxonomic recognition of many species are very controversial. To stabilize the taxonomy, the phylogenetic relationships among about 52 species are investigated from 96 samples using mtDNA sequence data. Matrilineal relationships based on maximum likelihood and Bayesian inference methods resolve three well‐supported lineages (A, B and C), although the phylogenetic relationships among three lineages remain ambiguous. Analyses support recognition of two previously assigned subgenera, Leptomantis and Rhacophorus, and these correspond to lineages A and B, respectively. Given that we have three strongly supported lineages, that these lineages are morphologically distinct, and the constrained geographic distributions of these groups, we recognize each lineage as a taxon. Subgenus Leptomantis includes species mainly from Malaysia, Indonesia and the Philippines. Subgenus Rhacophorus contains a mix of species occurring in India, Indochina and southern China. Lineage C accommodates species distributed mostly in East Asia, including Japan and China. Based on genetic and morphological data from type localities, the taxonomic recognition of some species needs to be reconsidered. Rhacophorus pingbianensis and Polypedates spinus are considered as junior synonyms of Rhacophorus duboisi. Specimens of Rhacophorus rhodopus from Vietnam and Hainan, China likely represent an undescribed, cryptic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号