首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ali Arab  Gina M. Wimp 《Oecologia》2013,173(2):331-341
While numerous studies have examined the effects of increased primary production on higher trophic levels, most studies have focused primarily on the grazing food web and have not considered the importance of alternate prey channels. This has happened despite the fact that fertilization not only increases grazing herbivore abundance, but other types of consumers such as detritivores that serve as alternate prey for generalist predators. Alternate prey channels can sustain generalist predators at times when prey abundance in the grazing food web is low, thus increasing predator densities and the potential for trophic cascades. Using arthropod data from a fertilization experiment, we constructed a hierarchical Bayesian model to examine the direct and indirect effects of plant production and alternate prey channels on predators in a salt marsh. We found that increased plant production positively affected the density of top predators via effects on lower trophic level herbivores and mesopredators. Additionally, while the abundance of algivores and detritivores positively affected mesopredators and top predators, respectively, the effects of alternate prey were relatively weak. Because previous studies in the same system have found that mesopredators and top predators rely on alternate prey such as algivores and detritivores, future studies should examine whether fertilization shifts patterns of prey use by predators from alternate channels to the grazing channel. Finally, the hierarchical Bayesian model used in this study provided a useful method for exploring trophic relationships in the salt marsh food web, especially where causal relationships among trophic groups were unknown.  相似文献   

2.
We performed a meta‐analysis of 31 lake mesocosm experiments to investigate differences in the responses of pelagic food chains and food webs to nutrient enrichment and fish presence. Trophic levels were divided into size‐based functional groups (phytoplankton into highly edible and poorly edible algae, and zooplankton into small herbivores, large herbivores and omnivorous zooplankton) in the food webs. Our meta‐analysis shows that 1) nutrient enrichment has a positive effect on phytoplankton and zooplankton, while fish presence has a positive effect on phytoplankton and a negative effect on zooplankton in the food chains; 2) nutrient enrichment has a positive effect on highly edible algae and small herbivores, but no effect on poorly edible algae, large herbivores and omnivorous zooplankton in the food webs. Planktivorous fish have a positive effect on highly edible algae and small herbivores, a negative effect on large herbivores and omnivorous zooplankton, and no effect on poorly edible algae. Our meta‐analysis confirms that nutrient enrichment and planktivorous fish affect functional groups differentially within trophic levels, revealing important changes in the functioning of food webs. The analysis of fish effects shows the well‐described trophic cascade in the food chain and reveals two trophic cascades in the food web: one transmitted by large herbivores that benefit highly edible phytoplankton, and one transmitted by omnivorous zooplankton that benefit small herbivores. Comparison between the responses of food webs and simple food chains also shows consistent biomass compensation between functional groups within trophic levels.  相似文献   

3.
The role of riparian forests in the functioning of aquatic ecosystems is well known, and they are recognized as an important food source for riverine fauna. This study investigates the trophic structure of coastal freshwater stream fishes from a large conservation area in an Atlantic rainforest using stomach content and food availability analyses. Four samples were collected from 19 sample sites. Fishes were caught with electrofishing. Prey were sampled with trays, Surber, traps, and electrofishing to evaluate the availability of food resources. The diets of 20 fish species were determined from the stomach contents of 1691 individuals. Terrestrial and aquatic insects and detritus were the most consumed items. Fish diet and prey availability were not seasonally dependent. A cluster analysis showed five trophic functional groups: terrestrial insectivores, aquatic insectivores, detritivores, carnivores, and omnivores. Insectivores predominated in species richness (60%), abundance (47%) and biomass (39%). Allochthonous and autochthonous items were found in similar proportions in the environment; however, allochthonous items were representative for insectivores and detritivores, whereas autochthonous items were important for primarily aquatic insectivores. The preference for certain insects by insectivorous fishes was associated with food selectivity rather than the availability of the resource and demonstrated the strong relationship between feeding behavior and food preference. The absence of seasonal variation in the diets of the fishes was possibly related to the consistent food supply. Our results confirm the role of the forest as a food provider for stream fishes, such as terrestrial insects and plant debris/detritus (also consumed by aquatic insects, which subsequently serve as food for fish), highlighting the importance of conserving the Brazilian Atlantic rainforests.  相似文献   

4.
5.
Detritus is a central feature in marine, freshwater, and terrestrial ecosystems. Despite the ubiquity of detritus, ecologists have largely ignored its role in influencing food web structure. We used a meta‐analytic approach to ask three questions about how detritus affects food web structure in a wide variety of ecosystems. First, what is the effect strength of detritus on primary producers, detritivores, herbivores, and predators? Second, what functional role does detritus serve for consumers (energetic, habitat, or both)? Third, how does the effect of detritus on consumers vary between aquatic and terrestrial ecosystems? We found that detritus has strong positive effects on primary producers and consumers in a wide range of ecosystems types. Detritus has a positive direct effect on detritivores by providing both an energetic resource and habitat (refuge from predators). Detritus has equally strong positive effects on herbivores and predators, driven by a positive direct effect of habitat. Detritus has positive effects on consumers in both aquatic and terrestrial ecosystems with 1.7 times stronger effects in terrestrial ecosystems. These results suggest that detritus has strong effects on food‐web structure in a variety of ecosystem types. Even the portion of the food web that is linked most strongly to living plant tissue as its primary energy source is strongly positively affected.  相似文献   

6.
Gruner DS  Taylor AD 《Oecologia》2006,147(4):714-724
A longstanding goal for ecologists is to understand the processes that maintain biological diversity in communities, yet few studies have investigated the combined effects of predators and resources on biodiversity in natural ecosystems. We fertilized nutrient limited plots and excluded insectivorous birds in a randomized block design, and examined the impacts on arthropods associated with the dominant tree in the Hawaiian Islands, Metrosideros polymorpha (Myrtaceae). After 33 months, the species load (per foliage mass) of herbivores and carnivores increased with fertilization, but rarified richness (standardized to abundance) did not change. Fertilization depressed species richness of arboreal detritivores, and carnivore richness dropped in caged, unfertilized plots, both because of the increased dominance of common, introduced species with treatments. Herbivore species abundance distributions were more equitable than other trophic levels following treatments, and fertilization added specialized native species without changing relativized species richness. Overall, bird removal and nutrient addition treatments on arthropod richness acted largely independently, but with countervailing influences that obscured distinct top-down and bottom-up effects on different trophic levels. This study demonstrates that species composition, biological invasions, and the individuality of species traits may complicate efforts to predict the interactive effects of resources and predation on species diversity in food webs.  相似文献   

7.
This paper characterizes predator–prey interactions amongst African mammals from C4 savanna environments using stable carbon and nitrogen isotope proxies for diet. Stable carbon (δ13C) and nitrogen (δ15N) isotope data from hair and faeces of large African mammal carnivores, and herbivores as potential prey, are presented for a diverse range of taxa. Carbon-isotope data imply that most carnivores from the “lowveld” savanna of South Africa form part of C4 grass-based food webs. Nitrogen isotope data show clear differences between trophic levels, although it appears that the magnitude of these differences varies between predators feeding on invertebrates and vertebrates, respectively. Whilst the number of carnivore samples for which data are available is relatively few, and data for prey are restricted mainly to large ungulate herbivores, results clearly demonstrate the potential for future applications of this technique to predator–prey food webs in African savannas. In tandem with traditional approaches, stable isotopes can help elucidate patterns of predator impacts on prey populations, domestic livestock, and resolving similar food webs in palaeoenvironmental contexts.  相似文献   

8.
The prey base for Patagonian carnivores has been altered greatly over the past 150 years due to widespread overgrazing by livestock, invasions by exotic wildlife, and hunting. On ranches in northern Patagonia carnivores consume mostly exotic species, and native herbivores are ecologically extinct in their role as prey. In this study we compare diets of the culpeo (Lycalopex culpaeus), chilla (L. griseus), puma (Puma concolor), Geoffroy's cat (Leopardus geoffroyi), colocolo (L. colocolo), and hog-nosed skunks (Conepatus chinga and C. humboldtii) in a reserve with a mostly native prey base to their diets on the ranches, and evaluate how differences in prey bases affect trophic interactions among carnivores. Carnivores in the reserve consumed mostly native prey. Dietary overlap among carnivores was not significant on the reserve, but was highly significant on the ranches. This homogenization of diets where densities of native species are reduced could lead to stronger negative interactions among carnivores, altering the composition of the carnivore assemblage to the detriment of the more specialized species. Study of carnivore diets may be a relatively quick way to evaluate the conservation status and ecological functionality of prey assemblages in Patagonia and other areas where these have been altered.  相似文献   

9.
Investigated were whether fish assemblages in 35 neotropical floodplain lakes along the Magdalena River, Colombia (ranging from 4 to 2333 ha) have a trophic structure that is dependent on fish body size within the diel cycle (24 h), and whether any changes to the trophic structure of fish assemblages occur during the diel cycle. Sampling was done during diel cycles in the rainy seasons between 2008 and 2011 (ten lakes in 2008, 20 in 2010, and five in 2011). Small fish (27–87 mm) were most active from 06:01 to 18:00, while larger predatory fish (>87 mm) were inactive during this time. In addition to fish body size, trophic group composition also varied throughout the diel cycle: insectivores, piscivores, and omnivore‐insectivores were the dominant groups from 06:01 to 18:00; carnivores, carnivore‐insectivores, and detritivores dominated from 18:01 to 06:00. This study highlights the importance of fish size in predicting predator‐prey interactions during different periods of the diel cycle.  相似文献   

10.
This study provides insight into the importance of top carnivores (top-down control) and nutrient inputs (bottom-up control) in structuring food chains in a terrestrial grassland system. Qualitative predictions about food chain structure are generated using 4 simple models, each differing in assumptions about some key component in the population dynamics of the herbivore trophic level. The four model systems can be classified broadly into two groups (1) those that assume plant resource intake by herbivores is limited by search rate and handling time as described by classic Lotka-Volterra models; and (2) those that assume plant resource intake by herbivores is limited externally by the supply rate of resources as described by alternatives to Lotka-Volterra formulations. The first class of models tends to ascribe greater importance to top-down control of food chain structure whereas the second class places greater weight on bottom-up control. I evaluated the model predictions using experimentally assembled grassland food chains in which I manipulated nutrient inputs and carnivore (wolf spider) abundance to determine the degree of top-down and bottom-up control of grassland plants and herbivores (grasshoppers). The experimental results were most consistent with predictions of the second class of models implying a predominance of bottom-up control of food chain structure.  相似文献   

11.
Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey''s body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.  相似文献   

12.
Shrub encroachment due to heavy grazing has led to dramatic changes in arid savanna landscape structure worldwide. It is considered to be one of the most threatening forms of rangeland degradation altering plant diversity. However, possible impacts of shrub encroachment on species diversity at higher trophic levels remain poorly understood. Additionally, indirect effects, such as changes of trophic interactions, are often ignored when trying to understand changes in biodiversity patterns. In this study, conducted in the southern Kalahari, we explored how the diversity of small carnivores and their prey is affected by shrub encroachment. We analysed the relationships between abundance and diversity of small carnivores, the availability of their main prey groups (coleopterans, termites, grasshoppers, rodents) and the structural diversity of the landscape (shrub, grass and herb cover). Eight hundred track surveys were conducted to determine carnivore abundance on 20 rangeland habitats, which represented a gradient of grazing intensity. Prey availability was surveyed for each study site and related to vegetation cover.

Results show a significant impact of shrub cover on abundance and diversity of carnivores and their prey. The diversity of both, carnivores and their prey, showed a hump-shaped response to increasing shrub cover whereas relative carnivore abundance decreased. Availability of prey groups was affected differently by shrub cover increase. Diversity of carnivores was best predicted by shrub cover (R2>0.7, p<0.001) indicating the overriding role of habitat structure as compared to prey availability. We conclude that intermediate shrub cover values enrich structural diversity of savanna landscape and in consequence sustain diversity of small carnivores and their prey in arid and semiarid ecosystems.  相似文献   


13.
We present a quantitative synthesis of trophic cascades in terrestrial systems using data from 41 studies, reporting 60 independent tests. The studies covered a wide range of taxa in various terrestrial systems with varying degrees of species diversity. We quantified the average magnitude of direct effects of carnivores on herbivore prey and indirect effects of carnivores on plants. We examined how the effect magnitudes varied with type of carnivores in the study system, food web diversity, and experimental protocol. A metaanalysis of the data revealed that trophic cascades were common among the studies. Exceptions to this general trend did arise. In some cases, trophic cascades were expected not to occur, and they did not. In other cases, the direct effects of carnivores on herbivores were stronger than the indirect effects of carnivores on plants, indicating that top-down effects attenuated. Top-down effects usually attenuated whenever plants contained antiherbivore defenses or when herbivore species diversity was high. Conclusions about the strength of top-down effects of carnivores varied with the type of carnivore and with the plant-response variable measured. Vertebrate carnivores generally had stronger effects than invertebrate carnivores. Carnivores, in general, had stronger effects when the response was measured as plant damage rather than as plant biomass or plant reproductive output. We caution, therefore, that conclusions about the strength of top-down effects could be an artifact of the plant-response variable measured. We also found that mesocosm experiments generally had weaker effect magnitudes than open-plot field experiments or observational experiments. Trophic cascades in terrestrial systems, although not a universal phenomenon, are a consistent response throughout the published studies reviewed here. Our analysis thus suggests that they occur more frequently in terrestrial systems than currently believed. Moreover, the mechanisms and strengths of top-down effects of carnivores are equivalent to those found in other types of systems (e.g., aquatic environments).  相似文献   

14.
15.
Previous syntheses have identified the key roles that phylogeny, body size, and trophic level play in determining arthropod stoichiometry. To date, however, detritivores have been largely omitted from such syntheses, despite their importance in nutrient cycling, biodiversity, and food web interactions. Here, we report on a compiled database of the allometry and nutritional stoichiometry (N and P) of detritivorous arthropods. Overall, both N and P content for detritivores varied among major phylogenetic lineages. Detritivore N content was similar to the N content of herbivores, but below that of predators. By contrast, detritivore P content was independent of trophic level. Contrary to previous reports, neither nutrient varied with body size. This analysis places detritivores in the context of related herbivores and predators, and as such, sets the stage for future investigations into the causes and consequences of elemental (mis)matches between detritivores and their detrital resources. Holly M. Martinson and Katie Schneider are co-first author.  相似文献   

16.
Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs.  相似文献   

17.
1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range.  相似文献   

18.
《Acta Oecologica》1999,20(4):407-415
This work is based on a compilation and treatment of data obtained on several studies regarding the macrobenthos trophic structure, carried out in different habitats of the Portuguese coast: a lagoon, rocky subtidal shores and estuarine eelgrass beds. Macrobenthic organisms were assigned to four distinct trophic groups (filter feeders, detritivores, herbivores and carnivores). Detritivores were the dominant trophic group in soft-bottom communities. Filter feeders dominated in subtidal rocky shores while eelgrass communities were equally represented by detritivores and herbivores. Current intensity and sediment deposition are discussed as factors affecting the observed distribution. Nevertheless, different sampling methods used in these studies and the lack of information on feeding habits of some species can also influence the results obtained.  相似文献   

19.
Large carnivore community structure is affected by direct and indirect interactions between intra-guild members. Co-existence between different species within a carnivore guild may occur through diet, habitat or temporal partitioning. Since carnivore species are highly dependent on availability and accessibility of prey, diet partitioning is potentially one of the most important mechanisms in allowing carnivores to co-exist. Intra-guild interactions may vary over time as carnivore prey preference and diet overlap can change due to seasonal changes in resource availability. We conducted scat analysis to compare the seasonal changes in prey preference, diet partitioning and niche breadth of four large carnivore species, namely leopard Panthera pardus, spotted hyena Crocuta crocuta, brown hyena Parahyaena brunnea and wild dog Lycaon pictus in central Tuli, Botswana. Large carnivores in central Tuli display a high dietary overlap, with spotted hyena and brown hyena displaying almost complete dietary overlap and the other carnivore species displaying slightly lower but still significant dietary overlap. Dietary niche breadth for both hyena species was high possibly due to their flexible foraging strategies, including scavenging, while leopard and wild dog showed a relatively low niche breadth, suggesting a more specialised diet. High dietary overlap in central Tuli is possibly explained by the high abundance of prey species in the area thereby reducing competition pressure between carnivore species. Our research highlights the need to assess the influence of diet partitioning in structuring large carnivore communities across multiple study sites, by demonstrating that in prey rich environments, the need for diet partitioning by carnivores to avoid competition may be limited.  相似文献   

20.
The exceptional diversity of large mammals in African savannas provides an ideal opportunity to explore the relative importance of top‐down and bottom‐up controls of large terrestrial herbivore communities. Recent work has emphasized the role of herbivore and carnivore body size in shaping these trophic relationships. However, the lack of across‐ecosystem comparisons using a common methodology prohibits general conclusions. Here we used published data on primary production, herbivore and carnivore densities and diets to estimate the consumption fluxes between three trophic levels in four African savanna ecosystems. Our food web approach suggests that the body size distribution within and across trophic levels has a strong influence on the strength of top‐down control of herbivores by carnivores and on consumption fluxes within ecosystems, as predicted by theoretical food web models. We generalize findings from the Serengeti ecosystem that suggest herbivore species below 150 kg are more likely to be limited by predation. We also emphasize the key functional role played by the largest species at each trophic level. The abundance of the largest herbivore species largely governs the consumption of primary production in resident communities. Similarly, predator guilds in which the largest carnivore species represent a larger share of carnivore biomass are likely to exert a stronger top‐down impact on herbivores. Our study shows how a food web approach allows integrating current knowledge and offers a powerful framework to better understand the functioning of ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号