首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.

Background  

The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display.  相似文献   

2.
Since the realisation that the antigen‐binding regions of antibodies, the variable (V) regions, can be uncoupled from the rest of the molecule to create fragments that recognise and abrogate particular protein functions in cells, the use of antibody fragments inside cells has become an important tool in bioscience. Diverse libraries of antibody fragments plus in vivo screening can be used to isolate single chain variable fragments comprising VH and VL segments or single V‐region domains. Some of these are interfering antibody fragments that compete with protein‐protein interactions, providing lead molecules for drug interactions that until now have been considered difficult or undruggable. It may be possible to deliver or express antibody fragments in target cells as macrodrugs per se. In future incarnations of intracellular antibodies, however, the structural information of the interaction interface of target and antibody fragment should facilitate development of binding site mimics as small drug‐like molecules. This is a new dawn for intracellular antibody fragments both as macrodrugs and as precursors of drugs to treat human diseases and should finally lead to the removal of the epithet of the ‘undruggable’ protein‐protein interactions.  相似文献   

3.
The antibody molecule is modular and separate domains can be extracted through biochemical or genetic means. It is clear from review of the literature that a wave of novel, antigen-specific molecular forms may soon enter clinical evaluation. This report examines the developmental histories of therapeutics derived from antigen-specific fragments of antibodies produced by recombinant processes. Three general types of fragments were observed, antigen-binding fragments (Fab), single chain variable fragments (scFv) and “third generation” (3G), each representing a successive wave of antibody fragment technology. In parallel, drug developers have explored multi-specificity and conjugation with exogenous functional moieties in all three fragment types. Despite high hopes and an active pipeline, enthusiasm for differentiating performance of fragments should, perhaps, be tempered as there are yet few data that suggest these molecules have distinct clinical properties due only to their size.Key words: antibody fragments, scFv, Fab, technology development, antibody-drug conjugate  相似文献   

4.
We describe the construction of a phage antibody fragments library which combines, in a single cloning step, a synthetic human light chain variable region (V(L)) with a diverse set of heavy chain variable regions, from a mouse immunized with the prostate specific antigen (PSA). Despite V(L) restriction, selection from this library rendered two different single chain Fv antibody fragments, specifically recognizing PSA. The human V(L), used as a general partner for mouse heavy chains, was constructed by linking the germline A27 gene and the J(K)1 minigene segment, both of which are prominently involved in human antibody responses. Our approach offers a fast and simple way to produce half-human molecules, while keeping the advantage of immunizing animals for high affinity antibodies.  相似文献   

5.
The display of proteins on the surface of phage offers a powerful means of selecting for rare genes encoding proteins with binding activities. Recently we found that antibody heavy and light chain variable (V) domains fused as a single polypeptide chain to a minor coat protein of filamentous phage fd, could be enriched by successive rounds of phage growth and panning with antigen. This allows the selection of antigen-binding domains directly from diverse libraries of V-genes. Now we show that heterodimeric Fab fragments can be assembled on the surface of the phage by linking one chain to the phage coat protein, and secreting the other into the bacterial periplasm. Furthermore by introducing an amber mutation between the antibody chain and the coat protein, we can either display the antibody on phage using supE strains of bacteria, or produce soluble Fab fragment using non-suppressor strains. The use of Fab fragments may offer advantages over single chain Fv fragments for construction of combinatorial libraries.  相似文献   

6.
Phage display of antibody fragments from natural or synthetic antibody libraries with the single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. However, the nature of the artificial single chain constructs results in unstable proteins expressed on the phage surface or as soluble proteins secreted in the bacterial culture medium. The stability of the variable domain structures can be enhanced with interdomain disulfide bond, but the single chain disulfide-stabilized constructs (sc-dsFv) have yet to be established as a feasible format for bacterial phage display due to diminishing expression levels on the phage surface in known phage display systems. In this work, biological combinatorial searches were used to establish that the c-region of the signal sequence is critically responsible for effective expression and functional folding of the sc-dsFv on the phage surface. The optimum signal sequences increase the expression of functional sc-dsFv by 2 orders of magnitude compared with wild-type signal sequences, enabling the construction of phage-displayed synthetic antivascular endothelial growth factor sc-dsFv libraries. Comparison of the scFv and sc-dsFv variants selected from the phage-displayed libraries for vascular endothelial growth factor binding revealed the sequence preference differences resulting from the interdomain disulfide bond. These results underlie a new phage display format for antibody fragments with all the benefits from the scFv format but without the downside due to the instability of the dimeric interface in scFv.  相似文献   

7.
A structure-based approach was used to design libraries of synthetic heavy chain complementarity determining regions (CDRs). The CDR libraries were displayed as either monovalent or bivalent single-chain variable fragments (scFvs) with a single heavy chain variable domain scaffold and a fixed light chain variable domain. Using the structure of a parent antibody as a guide, we restricted library diversity to CDR positions with significant exposure to solvent. We introduced diversity with tailored degenerate codons that ideally only encoded for amino acids commonly observed in natural antibody CDRs. With these design principles, we reasoned that we would produce libraries of diverse solvent-exposed surfaces displayed on stable scaffolds with minimal structural perturbations. The libraries were sorted against a panel of proteins and yielded multiple unique binding clones against all six antigens tested. The bivalent library yielded numerous unique sequences, while the monovalent library yielded fewer unique clones. Selected scFvs were converted to the Fab format, and the purified Fab proteins retained high affinity for antigen. The results support the view that synthetic heavy chain diversity alone may be sufficient for the generation of high-affinity antibodies from phage-displayed libraries; thus, it may be possible to dispense with the light chain altogether, as is the case in natural camelid immunoglobulins.  相似文献   

8.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

9.
10.
Improving the functional and structural properties of target proteins can often be a challenge for researchers. This paper highlights the importance of antibody construct on screening performance, and ultimately, the clone that is selected. We report the reformatting of phage-selected single chain antibody variable region fragments (scFvs) into single chain antibody fragments (scAbs) for improved screening and binding studies. The generation of a scAb, which had a fused human kappa light chain constant domain (C(k)), was shown to significantly improve expression levels in Escherichia coli. Antibody expression levels were compared between the two antibody constructs (scFv and scAb) by ELISA and a 100-fold improvement was observed. The C(k) domain in the expressed scAb also facilitated high throughput analysis by a Biacore capture assay approach. Individual functional scAbs were ranked on the basis of their remaining binding percentage after 5 min dissociation. Selected antibodies were further characterised by kinetic analysis and a sandwich-based immunoassay developed. The scAb construct enhanced expression levels significantly, facilitating antibody screening and immunoassay development for prostate-specific antigen (PSA), a marker for prostate cancer.  相似文献   

11.
The antigen-dependent stabilization of an anti-hen egg lysozyme (HEL) antibody HyHEL-10 variable region was monitored with fluorescence resonance energy transfer (FRET) between fluorolabeled heavy chain (VH) and light chain (VL) fragments. The VH and VL fragments labeled with succinimide esters of fluorescein and rhodamine-X, respectively, were mixed in a cooled cuvette, and the change in fluorescence spectra upon antigen addition was monitored. When excited at 490 nm, significant decrease in the fluorescence at 520 nm and its increase at 605 nm were observed when an increasing amount of HEL was added to the mixture in the concentration range of 1-100 micrograms/mL. The assay, named open sandwich fluoroimmunoassay (FIA), is noncompetitive and homogeneous and can be conducted with one clone of antibody. With the use of appropriate antibodies, it is thought to be a quick and inexpensive alternative to the conventional laborious and/or expensive immunoassays.  相似文献   

12.
Intracellular antibody fragments that interfere with molecular interactions inside cells are valuable in investigation of interactomes and in therapeutics, but their application demands that they function in the reducing cellular milieu. We show here a 2.7-Å crystal structure of intracellular antibody folds based on scaffolds developed from intracellular antibody capture technology, and we reveal that there is no structural or functional difference with or without the intra-domain disulfide bond of the variable domain of heavy chain or the variable domain of light chain. The data indicate that, in the reducing in vivo environment, the absence of the intra-domain disulfide bond is not an impediment to correction of antibody folding or to interaction with antigen. Thus, the structural constraints for in-cell function are intrinsic to variable single-domain framework sequences, providing a generic scaffold for isolation of functional intracellular antibody single domains.  相似文献   

13.
Selective cleavage of polypeptides by alpha-thrombin can be reasonably predicted [Chang, J.Y. (1985) Eur. J. Biochem. 151,217-224]. This knowledge was applied to the selective cleavage of antibody light chains with the aim of producing intact fragments of both variable region and constant region. (a) Mouse kappa light chains 10K26 and 10K44 from anti-(azobenzene arsonate) antibodies contain 20 Arg/Lys-Xaa bonds. Only two of them, one ProArg-Thr bond located at the joint of the variable region with the joining peptide and one ValLys-Ser bond located near the carboxyl-terminal end of the constant region, were selectively cleaved by alpha-thrombin. The ProArg-Thr bond has a 50% cleavage time of about 10 min under the designated conditions, whereas the ValLys-Ser has a 50% cleavage time approx. 9-10 h. A single selective cleavage at the joining position of the variable region and joining peptide can be achieved by short-time thrombin digestion. Fragments containing intact variable region (1-96) and intact joining peptide-constant region (97-214) obtained from both denatured and native light chains of 10K26 can be separated by gel filtration. (b) lambda light chains from both human and mouse all begin with the GlnProLys-(Ala/Ser) structure (positions 108-111) at their constant regions. This ProLys-Ala/Ser bond is also susceptible to specific thrombin cleavage. Four human lambda chain (KERN, NEI, NEW, VOR) and one mouse lambda chain (RPC20) were shown to be selectively cleaved by thrombin at these ProLys-Ala/Ser bonds. For human lambda chains, the 50% cleavage time at this ProLys-Ala bond was approx. 3-4 h under the designated conditions. Six additional thrombin specific cleavages were also detected within the variable regions of NEI, VOR and RPC-20. (c) Heparin inhibits thrombin cleavage of Arg/Lys-Xaa bonds located near the center of the antibody light chain, but slightly activates thrombin cleavage of those located near the amino or carboxyl-terminal ends of the protein. The significance of these findings is threefold. (a) It demonstrates that selective cleavage of large polypeptides by alpha-thrombin can also be reasonably predicted. (b) It provides a useful method for light chain fragmentation which can greatly facilitate amino acid sequencing of antibodies. (c) It serves to generate fragments containing intact variable regions and constant regions from antibody light chains of human and mouse. Such fragments may be useful for chemical semisynthesis of a human-mouse light chain chimeras.  相似文献   

14.
Recombinant antibody fragments consisting of variable domains can be easily produced in various host cells, but there is no universal system that can be used to purify and detect them in the free form or complexed with their antigen. Protein L (PpL) is a cell wall protein isolated from Peptostreptococcus magnus, which has been reported to interact with the V-KAPPA chain of some, but not all, antibodies. Here we grafted the V-KAPPA framework region 1 (FR1) sequence of a high-affinity PpL-binding antibody onto single-chain antibody fragments (scFvs), which have no reactivity with PpL. This substitution made it possible to purify and detect scFvs using PpL conjugates. It did not hinder scFv folding and expression in recombinant bacteria, and it did not interfere with their antigen-binding function. We also identified residue 12 as being potentially able to alter PpL binding. This study, therefore, suggests a way of engineering a PpL-binding site on any scFv without interfering with its function. This could provide a universally applicable method both for the rapid purification of functional recombinant antibody fragments and for their detection even when complexed with their antigen without requiring fusion to an epitope Flag.  相似文献   

15.
A hybridoma cell line that produces a monoclonal antibody specific for indole-3-acetic acid (IAA) was prepared. The DNA fragments coding the variable regions of the light and the heavy chains of the antibody were prepared by PCR using the cDNA of the antibody as a template. A chimera DNA for a single chain variable fragment (scFv) was constructed, and expressed in Escherichia coli. The scFv antibody expressed in E. coli as well as the original monoclonal antibody showed a specific binding to IAA.  相似文献   

16.
17.
Wang D  Zhang L  Li Y  Wang H  Xiao Q  Cao W  Feng W 《Biotechnology letters》2012,34(7):1193-1201
Chimeric T cell receptors (chTCRs), composed of the single-chain variable fragments (scFv) of murine antibodies and human signaling molecules, are used to redirect the specificity of autologous or allogeneic T lymphocytes. To develop novel therapeutic agents for treatment of chronic myeloid leukemia (CML), we engineered a scFv from the hybridoma cell line CMA1 which produces monoclonal antibody specific against CML. The genes encoding the heavy and light chain variable regions were amplified from CMA1 cDNA and a humanized chTCR was constructed. Expression of the novel hchTCR was verified in NIH3T3 cells transduced with retroviral vectors. The results demonstrated that hchTCR can be expressed and presented on cell surface normally. These results suggest that retroviral vectors expressing hchTCR specific for CML cells may be used to redirect human T lymphocytes.  相似文献   

18.
An active form of single-chain antibody (ScFv) from murine monoclonal antibody 4A7, which is specific for lipocalin-type prostaglandin D synthase (L-PGDS), was produced in Escherichia coli. The complementary DNA fragments encoding the variable regions of heavy chain (VH) and light chain (VL), which amplified from hybridoma 4A7 producing a monoclonal antibody (IgG1) against L-PGDS, were connected by a (Gly4Ser)3 linker using an assembly polymerase chain reaction. The resultant ScFv were cloned into the vector pGEM and expressed in E. coli as inclusion bodies. The expressed ScFv fusion proteins were purified by Ni2+-nitrilotriacetic acid chromatography. The purity and activity of purified ScFv were confirmed by SDS-PAGE and ELISA. The result revealed that 4A7 ScFv conserved the same characteristics of specific recognition and binding to sperm as the parental 4A7 monoclonal antibody.  相似文献   

19.
20.
Theoretical analyses suggest that the cellular internalization and catabolism of bound antibodies contribute significantly to poor penetration into tumors. Here we quantitatively assess the internalization of antibodies and antibody fragments against the commonly targeted antigen carcinoembryonic antigen (CEA). Although CEA is often referred to as a non-internalizing or shed antigen, anti-CEA antibodies and antibody fragments are shown to be slowly endocytosed by LS174T cells with a half-time of 10–16 h, a time scale consistent with the metabolic turnover rate of CEA in the absence of antibody. Anti-CEA single chain variable fragments (scFvs) with significant differences in affinity, stability against protease digestion, and valency exhibit similar uptake rates of bound antibody. In contrast, one anti-CEA IgG exhibits unique binding and trafficking properties with twice as many molecules bound per cell at saturation and significantly faster cellular internalization after binding. The internalization rates measured herein can be used in simple computational models to predict the microdistribution of these antibodies in tumor spheroids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号