首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three cell types were isolated from dissociated 16-cell sea urchin embryos. Four membrane density fractions from discontinuous gradients have different proportions of lipids, surfacer markers and enzymes for the three cell types. Assays of lipid content, CH/PLIPID and SPH/PC ratios, acyl chain length, level of unsaturation by proton NMR and assays of enzyme activity revealed variation at the same density between the three cell types and among different densities from one cell type. There were also differences between whole embryos and dissociated embryo cells. There was no typical membrane domain at a particular density common to the cell types. Cell surface characteristics and polarity of adult cells rely on which lipid domains and enzymes are present, their association with cytoskeleton and how they are localized. At the 16-cell stage these characteristics are still very dynamic as revealed by cytochemical localization of Na+/K(+)-ATPase which varied with cell type and suggests endocytosis at set times in the division cycle. Polarity has not been permanently set for Na+/K(+)-ATPase yet. Membrane enzyme and lipid distributions unique to the three cell types seen in this study suggest parcelling out or insertion of new membrane domains occurs during early sea urchin cleavage. Perturbation of membrane density distribution and lipid content occurs after treatment of embryos with animalizing and vegetalizing teratogens which alter development.  相似文献   

2.
3.
4.
The protein phosphorylation activities in extracts were assayed for 2-cell mouse embryos at three stages of the G2 phase of the cell cycle. The 2-cell embryos were unique in having a prolonged G2 phase and so easily staged at early G2 (EG2), middle G2 (MG2) and late G2 (LG2) by timing the embryo isolation from pregnant mice. The embryo extracts were used both as sources of protein kinases and their substrates. The phosphoproteins of the extracts were labelled with [gamma-32P]ATP and separated by electrophoresis on SDS-polyacrylamide gels. The present study revealed that protein phosphorylation increased 3-6-fold during the progression of 2-cell embryos from EG2 to LG2 and the level of protein phosphorylation at any stages was greatly decreased by the presence of cAMP. Thus, the protein phosphorylation system of 2-cell mouse embryos seems to differ from those reported systems in mammals in its negative dependence on cAMP.  相似文献   

5.
6.
Effects of epidermal growth factor (EGF) on the development of mouse 2-cell embryos cultured in vitro were investigated. The addition of EGF at a concentration of 0.5 ng/ml enhanced the development of 2-cell embryos during 24 h of incubation. As expected, EGF stimulated the synthesis of DNA in the 2-cell embryos about 4-fold over the control. The growth-promoting effect of EGF seemed to be specific in that other growth factors, such as transforming growth factor-alpha (TGF-alpha), transforming growth factor-beta (TGF-beta), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), nerve growth factor (NGF) and fibroblast growth factor (FGF) had no effect on the embryonal development. The addition of EGF also increased the rate of RNA synthesis in a dose-related manner between 0.1 and 50 ng/ml. However, protein synthesis was unaffected by EGF. These results raise the possibility that EGF may participate in the process of early embryogenesis in vivo.  相似文献   

7.
This study was an investigation of metabolism during bovine preimplantation development from the oocyte up to the hatched blastocyst derived in vitro or in vivo. Metabolism was determined by estimating the consumption of radiolabeled glucose, pyruvate, or lactate during a 4-h incubation period in a closed noninvasive system with NaOH as trap for the continuous collection of CO(2). The postincubation medium was analyzed for the presence of lactate. Embryonic metabolism from the matured oocyte to the 12-cell stage was more or less constant, with pyruvate being the preferred substrate. The first marked increase in oxidation of glucose occurred between the 12- and 16-cell stage. Compaction of morula and blastocyst expansion was accompanied by significant increases in oxidation of all three energy substrates. The incorporation of glucose increased steadily 15-fold from the 1-cell to the blastocyst stage. In general, the pattern of metabolism was similar between the embryos derived in vitro and in vivo but with some distinct differences. The most apparent feature of glucose metabolism by in vitro-produced embryos was a 2-fold higher rate of aerobic glycolysis as compared to that in their in vivo counterparts. In vitro-matured oocytes produced measurable amounts of lactate, whereas in vivo-matured oocytes exhibited a significantly lower metabolic activity and did not produce any lactate. When in vivo-collected embryos were preexposed to culture conditions, lactate production increased significantly and at the hatched blastocyst stage matched that of their in vitro counterparts. In vitro-produced embryos up to the 8-cell stage oxidized significantly higher amounts of lactate and had a lower ratio of pyruvate-to-lactate oxidation than the in vivo-obtained embryos. The results of this study show that under our culture conditions, important differences exist at the biochemical level between bovine embryos produced in vitro and those generated in vivo that may well affect the developmental capacity.  相似文献   

8.
Mouse embryos at the 2-, 4-, 8-cell, and morula stage were divided in half by using microsurgical procedures and were either grown in vitro up to the blastocyst stage or transferred at the late morula stage into the uteri of pseudopregnant recipients. A relatively high percentage of the half embryos from 2-cell (70%), 4-cell (75%), 8-cell (93%), or morula stage embryos (75%) developed into blastocysts in vitro. However, the overall development in vivo of half embryos was low, as 3%, 13%, 8%, and 1% of half embryos from the 2-cell, 4-cell, 8-cell, and morula stages, respectively, developed into live fetuses. Embryos which were divided in half at different stages developed at different rates in vitro. This determined the stage of embryonic development at the time of transfer, which might have interacted with the stage of pseudopregnancy of the recipients to influence embryo survival in vivo.  相似文献   

9.
Mutants of transketolase (TK) with improved substrate specificity towards the non-natural aliphatic aldehyde substrate propionaldehyde have been obtained by directed evolution. We used the same active-site targeted saturation mutagenesis libraries from which we previously identified mutants with improved activity towards glycolaldehyde, which is C2-hydroxylated like all natural TK substrates. Comparison of the new mutants to those obtained previously reveals distinctly different subsets of enzyme active-site mutations with either improved overall enzyme activity, or improved specificity towards either the C2-hydroxylated or non-natural aliphatic aldehyde substrate. While mutation of phylogenetically variant residues was found previously to yield improved enzyme activity on glycolaldehyde, we show here that these mutants in fact gave improved activity on both substrate types. In comparison, the new mutants were obtained at conserved residues which interact with the C2-hydroxyl group of natural substrates, and gave up to 5-fold improvement in specific activity and 64-fold improvement in specificity towards propionaldehyde relative to glycolaldehyde. This suggests that saturation mutagenesis can be more selectively guided for evolution towards either natural or non-natural substrates, using both structural and sequence information.  相似文献   

10.
11.
12.
13.
Several seven-carbon fatty acyl lecithins with varied acyl chain branching have been synthesized and characterized as potential phospholipase A2 substrates. Micellar bis(4,4-dimethylpentanoyl) phosphatidylcholine, bis(5-methylhexanoyl)phosphatidylcholine, bis(3-methylhexanoyl)phosphatidylcholine, and bis(2-methylhexanoyl)phosphatidylcholine are poor substrates for phospholipase A2 (Naja naja naja). These branched lecithins also inhibit the hydrolysis of diheptanoylphosphatidylcholine by the enzyme with Ki values comparable to or smaller than the apparent Km of the linear compound. The terminally branched lecithins are excellent substrates for another surface-active hydrolytic enzyme, phospholipase C from Bacillus cereus. When only one acyl chain bears a methyl group, the hybrid lecithins 1-heptanoyl-2-(2-methylhexanoyl)phosphatidylcholine and 1-(3-methylhexanoyl)-2-heptanoylphosphatidylcholine are substrates comparable to diheptanoylphosphatidylcholine. Analysis of micellar structure and dynamics by 1H and 13C NMR spectroscopy, quasi-elastic light scattering, and comparison of critical micellar concentrations indicates little significant difference in the conformation and dynamics of these seven-carbon fatty acyl lecithin micelles, even when the methyl groups are adjacent to the carbonyls. Phospholipase A2 UV difference spectra induced by phospholipid binding imply different enzyme conformations or aggregation states caused by linear-chain and asymmetric-chain lipids compared to bis(methylhexanoyl)phosphatidylcholines. The differences in hydrolytic activity of phospholipase A2 against the branched-chain micellar lecithins can then be attributed to an enzyme-lipid interaction at the active site. The species with both fatty acyl chains branched bind to phospholipase A2 but are not turned over rapidly. Since poor enzymatic activity only occurs for lecithins with both chains methylated, the interaction of both chains with the enzyme must be important for catalytic efficiency.  相似文献   

14.
De novo synthesis of 5S RNA and of transfer RNA (tRNA) has been demonstrated previously to occur by mid-cleavage (128-cell stage) in sea urchin embryos (24). The present study focused on determining more precisely the time of onset of activity of the genes for 5S RNA and for tRNA during sea urchin embryogenesis by preloading the GTP precursor pools of unfertilized eggs. The results showed that newly-made 5S RNA and tRNA could be detected as early as the 32-cell stage. In order to determine whether newly-synthesized 5S RNA accumulates coordinately during development with newly-made 26S (34) and 18S ribosomal RNAs (rRNAs), the relative rates of accumulation of these three RNA molecules were measured and compared at each of several stages of sea urchin embryogenesis. In contrast to the coordinated accumulation of newly-synthesized 26S and 18S rRNAs, newly-made 5S RNA accumulated in excess at the mesenchyme blastula (9-fold excess), midgastrula (5-fold excess) and prism (3-fold excess) stages. The 5S RNA/26S RNA molar ratios only approached unity in advanced (48 hr) plutei. The non-coordinated accumulation of newly-made 5S RNA with that of 26S and 18S rRNAs suggests that the accumulation of these newly-synthesized RNAs is differentially regulated during early sea urchin development.  相似文献   

15.
Ovulated mouse oocytes and preimplantation embryos were examined for NOR activity by means of selective silver staining. Evidence of the first staining activity appeared in two cell embryos, which was later followed by an increase in nucleolar activity, whereas the ovulated oocytes and pronuclei showed no such activity whatsoever. The staining of chromosomes was restricted to the nucleolus organizing region. Our results agree with earlier observations that genes for ribosomal RNA (rRNA) are transcribed as early as in the 2-cell stage in mouse embryogenesis. In addition to the nuclear staining we also observed some silver staining within the cytoplasm, at least from 4-cell stages onwards. Cytoplasmic staining was resistant to incubation with cycloheximide and actinomycin D. Nuclear staining was depressed, or even totally blocked, after actinomycin D incubation but was not blocked by cycloheximide. The onset of silver staining depends not on a specific embryonic stage but on the time interval following ovulation. This appears to indicate that the initiation of ribosomal cistrons is regulated by molecules which are activated or synthesized within the oocyte soon after ovulation.  相似文献   

16.
At all stages of ontogenesis glycogen phosphorylase (EC 2.4.1.1) from liver chick embryos in represented by an isoenzyme whose properties are close to those of isoenzyme IL or F. Total enzyme activity (a+b forms) from the 8th day of development up to hatching gradually increases 1.5-fold, a practically complete activation of enzyme being observed by the end of embryogenesis. Phosphorylase b possesses high catalytic activity in the presence of 1 mM AMP and it activated by protamine and 0.2 M Na2SO4. Glycogen synthetase (EC 2.4.1.11) has a constant Km(UDFG) value during ontogenesis. This value is about 5.10(-4) M in the presence of 10 mM glucose-6-phosphate, both for I- and D-forms of enzyme. The total enzyme activity reaches its maximum on the 17th postembryonic day and is decreased more than 6-fold thereafter. In the course of embryogenesis the I/D ratio is increased from 0.2 on the 8th day of development up to 0,45 during extensive accumulation of glycogen and falls down to 0.33 before hatching. Glycogen biosynthesis in embryonic liver is wellcorrelated with the increase in the I/D ratio, i.e. the increase of the active form of enzyme. The proportion of granular glycogen in embryonic liver is increased from 15% up to 90% of total glycogen content between the 8th and 14th days of development. The activity of glycogen synthetase contained in granular glycogen is increased from 40% in the 8-day-old embryos up to 90% in the 18-day-old ones. The activity of phosphorylase is found in granular glycogen only on the 12th day of embryogenesis and reaches its maximum (80% of total enzyme activity) only on the 19th days of development. It is concluded that in the adult chicken liver the embronic enzymes--glycogen phosphorylase and glycogen synthetase--are retained.  相似文献   

17.
18.
We have shown previously that the phospholipase A (PLA) activity specific for phosphatidic acid (PA) in porcine platelet membranes is of the A(1) type (PA-PLA(1)) [J. Biol. Chem. 259 (1984) 5083]. In the present study, the PA-PLA(1) was solubilized in Triton X-100 from membranes pre-treated with 1 M NaCl, and purified 280-fold from platelet homogenates by sequential chromatography on blue-Toyopearl, red-Toyopearl, DEAE-Toyopearl, green-agarose, brown-agarose, polylysine-agarose, palmitoyl-CoA-agarose and blue-5PW columns. In the presence of 0.1% Triton X-100 in the assay mixture, the partially purified enzyme hydrolyzed the acyl group from the sn-1 position of PA independently of Ca(2+) and was highly specific for PA; phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were poor substrates. The enzyme exhibited lysophospholipase activity for l-acyl-lysoPA at 7% of the activity for PA hydrolysis but no lipase activity was observed for triacylglycerol (TG) and diacylglycerol (DG). At 0.025% Triton X-100, the enzyme exhibited the highest activity, and PA was the best substrate, but PE was also hydrolyzed substantially. The partially purified PA-PLA(1) in porcine platelet membranes was shown to be different from previously purified and cloned phospholipases and lipases by comparing the sensitivities to a reducing agent, a serine-esterase inhibitor, a PLA(2) inhibitor, a Ca(2+)-independent phospholipase A(2) inhibitor, and a DG lipase inhibitor.  相似文献   

19.
Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity, increased phosphorylation of a 110-kDa protein is observed. Treatment of the embryo extracts with heparin, a highly specific inhibitor of CKII activity, results in a drastic reduction of the 110-kDa protein phosphorylation indicating that the protein might be a CKII-specific substrate. Rapidly proliferating mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme activity with minor alterations throughout the different stages of embryogenesis investigated.  相似文献   

20.
Blastomeres from 2- to 32-cell bovine embryos were transferred to enucleated oocytes matured either in vivo or in vitro by micromanipulation and electrofusion. The percentage of donor cells fusing with the recipient oocytes was dependent on relative cell size or stage of development. Therefore, when smaller donor karyoplasts (17- to 32-cell vs. 2- to 8-cell) were transferred, the rate of fusion was significantly less (p less than 0.01). After fusion, nuclear transfer embryos were cultured either in vitro or in vivo (in a ligated ovine oviduct). Nuclear transfer embryos cultured in vitro developed to the 4- to 6-cell stage after 72 h (4-cell, 71%; 8-cell, 33%, 16-cell, 33%; p less than 0.30), whereas nuclear transfer embryos cultured in vivo developed to the morula or blastocyst stage (2- to 8-cell, 11.7%; 9- to 16-cell, 16.0%; 17- to 32-cell, 8.3%; p greater than 0.30) after 4 or 5 days. Freshly ovulated oocytes (collected 36 h after the onset of estrus), when used as recipients, resulted in morula/blastocyst-stage embryos more often than in vitro-matured oocytes or in vivo-matured oocytes collected 48 h after the onset of estrus (20% vs. 7.8% and 6.7%, respectively; p less than 0.02). After in vivo culture, nuclear transfer embryos were mounted and fixed or transferred nonsurgically to the uteri of 6- to 8-day postestrus heifers. Seven pregnancies resulted from the transfer of 19 embryos into 13 heifers; 2 heifers completed pregnancy with the birth of live calves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号