首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Troutman JM  Andres DA  Spielmann HP 《Biochemistry》2007,46(40):11299-11309
Protein farnesyl transferase (FTase) catalyzes transfer of a 15 carbon farnesyl lipid to cysteine in the C-terminal Ca1a2X sequence of numerous proteins including Ras. Previous studies have shown that product release is rate limiting and is dependent on binding of either a new peptide or isoprenoid diphosphate substrate. While considerable progress has been made in understanding how FTase distinguishes between related target proteins, the relative importance of the two pathways for product release on substrate selectivity is unclear. A detailed analysis of substrate stimulated product release has now been performed and provides new insights into the mechanism of FTase target selectivity. To clarify how FTase selects between different Ca1a2X sequences, we have examined the competition of various peptide substrates for modification with the isoprenoids farnesyl diphosphate (FPP) and anilinogeranyl diphosphate (AGPP). We find that reactivity of some competing peptides is correlated with apparent Kmpeptide, while the reactivity of others is predicted by the selectivity factor apparent kcat/Kmpeptide. The peptide target selectivity also depends on the structure of the isoprenoid donor. Additionally, we observe two peptide substrate concentration dependent maxima and substrate inhibition in the steady-state reaction which require a minimum of three peptide binding states for the steady-state FTase reaction mechanism. We propose a model for the FTase reaction mechanism that, in addition to FPP stimulated product release, incorporates peptide binding to the FTase-FPP complex and the formation of an FTase-product-peptide complex followed by product release leading to an inhibitory FTase-peptide complex as a natural consequence of catalysis to explain these results.  相似文献   

2.
Hartman HL  Hicks KA  Fierke CA 《Biochemistry》2005,44(46):15314-15324
Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I (GGTase I) catalyze the attachment of lipid groups from farnesyl diphosphate and geranylgeranyl diphosphate, respectively, to a cysteine near the C-terminus of protein substrates. FTase and GGTase I modify several important signaling and regulatory proteins with C-terminal CaaX sequences ("C" refers to the cysteine residue that becomes prenylated, "a" refers to any aliphatic amino acid, and "X" refers to any amino acid). In the CaaX paradigm, the C-terminal X-residue of the protein/peptide confers specificity for FTase or GGTase I. However, some proteins, such as K-Ras, RhoB, and TC21, are substrates for both FTase and GGTase I. Here we demonstrate that the C-terminal amino acid affects the binding affinity of K-Ras4B-derived hexapeptides (TKCVIX) to FTase and GGTase I modestly. In contrast, reactivity, as indicated by transient and steady-state kinetics, varies significantly and correlates with hydrophobicity, volume, and structure of the C-terminal amino acid. The reactivity of FTase decreases as the hydrophobicity of the C-terminal amino acid increases whereas the reactivity of GGTase I increases with the hydrophobicity of the X-group. Therefore, the hydrophobicity, as well as the structure of the X-group, determines whether peptides are specific for farnesylation, geranylgeranylation, or dual prenylation.  相似文献   

3.
Protein farnesyl transferase (FTase) catalyzes transfer of a 15-carbon farnesyl group from farnesyl diphosphate (FPP) to a conserved cysteine in the C-terminal Ca1a2X motif of a range of proteins ("C" refers to the cysteine, "a" to any aliphatic amino acid, and "X" to any amino acid), and the lipid chain interacts with, and forms part of, the Ca1a2X peptide binding site. Here, we employed a library of anilinogeranyl diphosphate (AGPP) derivatives to examine whether altering the interacting surface between the two substrates could be exploited to generate Ca1a2X peptide selective FPP analogues. Analysis of transfer kinetics to dansyl-GCVLS peptide revealed that AGPP analogues with substituents smaller than or equal in size to a thiomethyl group supported FTase function, while analogues with larger substituents did not. Analogues with small meta-substitutions on the aniline ring such as iodo and cyano increased reactivity with dansyl-GCVLS and provided analogues that were effective FPP competitors. Other analogues with ortho-substitutions on the aniline were potent dansyl-GCVLS modification FTase inhibitors (Ki in the 2.4-18 nM range). Both meta- and para-trifluoromethoxy-AGPP are transferred to dansyl-GCVLS while the ortho-substituted isomer was a potent farnesyl transferase inhibitor (FTI) with an inhibition constant Ki = 3.0 nM. In contrast, ortho-trifluoromethoxy-AGPP was efficiently transferred to dansyl-GCVIM. Competition for dansyl-GCVLS and dansyl-GCVIM peptides by FPP and ortho-trifluoromethoxy-AGPP gave both analogue and farnesyl modified dansyl-GCVIM but only farnesylated dansyl-GCVLS. We provide evidence that competitive modification of dansyl-GCVIM by ortho-trifluoromethoxy-AGPP stems from a prechemical step discrimination between the competing peptides by the FTase-analogue complex. These results show that subtle changes engineered into the isoprenoid structure can alter the reactivity and FPP competitiveness of the analogues, which may be important for the development of prenylated protein function inhibitors.  相似文献   

4.
Cui G  Wang B  Merz KM 《Biochemistry》2005,44(50):16513-16523
Farnesyltransferase (FTase) catalyzes the transfer of farnesyl from farnesyl diphosphate (FPP) to cysteine residues at or near the C-terminus of protein acceptors with a CaaX motif (a, aliphatic; X, Met). Farnesylation is a critical modification to many switch proteins involved in the extracellular signal transduction pathway, which facilitates their fixation on the cell membrane where the extracellular signal is processed. The malfunction caused by mutations in these proteins often causes uncontrolled cell reproduction and leads to tumor formation. FTase inhibitors have been extensively studied as potential anticancer agents in recent years, several of which have advanced to different phases of clinical trials. However, the mechanism of this biologically important enzyme has not been firmly established. Understanding how FTase recruits the FPP substrate is the first and foremost step toward further mechanistic investigations and the design of effective FTase inhibitors. Molecular dynamic simulations were carried out on the ternary structure of FTase complexed with the FPP substrate and an acetyl-capped tetrapeptide (acetyl-CVIM), which revealed that the FPP substrate maintains an inactive conformation and the binding of the diphosphate group can be largely attributed to residues R291beta, K164alpha, K294beta, and H248beta. The FPP substrate assumes an extended conformation in the binding site with restricted rotation of the backbone dihedral angles; however, it does not have a well-defined conformation when unbound in solution. This is evident from multinanosecond MD simulations of the FPP substrate in a vacuum and solution. Our conclusion is further supported by theoretical J coupling calculations. Our results on the FPP binding are in good agreement with previous experimental kinetic studies on FTase mutants. The hypothetical conformational activation of the FPP substrate is currently under investigation.  相似文献   

5.
Post-translational modifications are essential for the proper function of many proteins in the cell. The attachment of an isoprenoid lipid (a process termed prenylation) by protein farnesyltransferase (FTase) or geranylgeranyltransferase type I (GGTase-I) is essential for the function of many signal transduction proteins involved in growth, differentiation, and oncogenesis. FTase and GGTase-I (also called the CaaX prenyltransferases) recognize protein substrates with a C-terminal tetrapeptide recognition motif called the Ca1a2X box. These enzymes possess distinct but overlapping protein substrate specificity that is determined primarily by the sequence identity of the Ca1a2X motif. To determine how the identity of the Ca1a2X motif residues and sequence upstream of this motif affect substrate binding, we have solved crystal structures of FTase and GGTase-I complexed with a total of eight cognate and cross-reactive substrate peptides, including those derived from the C termini of the oncoproteins K-Ras4B, H-Ras and TC21. These structures suggest that all peptide substrates adopt a common binding mode in the FTase and GGTase-I active site. Unexpectedly, while the X residue of the Ca1a2X motif binds in the same location for all GGTase-I substrates, the X residue of FTase substrates can bind in one of two different sites. Together, these structures outline a series of rules that govern substrate peptide selectivity; these rules were utilized to classify known protein substrates of CaaX prenyltransferases and to generate a list of hypothetical substrates within the human genome.  相似文献   

6.
The zinc metalloenzyme protein farnesyltransferase (FTase) catalyzes the transfer of a 15-carbon farnesyl moiety from farnesyl diphosphate (FPP) to a cysteine residue near the C-terminus of a protein substrate. Several crystal structures of inactive FTase.FPP.peptide complexes indicate that K164alpha interacts with the alpha-phosphate and that H248beta and Y300beta form hydrogen bonds with the beta-phosphate of FPP [Strickland, C. L., et al. (1998) Biochemistry 37, 16601-16611]. Mutations K164Aalpha, H248Abeta, and Y300Fbeta were prepared and analyzed by single turnover kinetics and ligand binding studies. These mutations do not significantly affect the enzyme affinity for FPP but do decrease the farnesylation rate constant by 30-, 10-, and 500-fold, respectively. These mutations have little effect on the pH and magnesium dependence of the farnesylation rate constant, demonstrating that the side chains of K164alpha, Y300beta, and H248beta do not function either as general acid-base catalysts or as magnesium ligands. Mutation of H248beta and Y300beta, but not K164alpha, decreases the farnesylation rate constant using farnesyl monophosphate (FMP). These data suggest that, contrary to the conclusions derived from analysis of the static crystal structures, the transition state for farnesylation is stabilized by interactions between the alpha-phosphate of the isoprenoid substrate and the side chains of Y300beta and H248beta. These results suggest an active substrate conformation for FTase wherein the C1 carbon of the FPP substrate moves toward the zinc-bound thiolate of the protein substrate to react, resulting in a rearrangement of the diphosphate group relative to its ground state position in the binding pocket.  相似文献   

7.
Protein farnesyltransferase (FTase) is a particularly interesting zinc enzyme that promotes the transfer of a 15-carbons isoprenoid farnesyl group from farnesyl diphosphate (FPP) to a number of peptide substrates with a typical-CAAX motif at the carboxyl-terminus, where C represents the cysteine residue that is farnesylated. This enzyme has been the subject of great attention in anticancer research, as several proteins known to be involved in human cancer development are thought to serve as substrates for FTase and to require farnesylation for proper biological activity. Several FTase inhibitors have advanced into clinical testing. However, despite the progress in the field several functional and mechanistic doubts on the FTase catalytic activity have persisted. This work describes the application of molecular dynamics simulations using specifically designed molecular mechanical parameters to the four key-intermediate states formed during the FTase catalytic mechanism–FTase resting state, binary complex (FTase-FPP), ternary complex (FTase-FPP-Peptide), and product complex (FTase-Product). The study involves a comparative analysis of several important molecular aspects for which are vital not only motion but also the conformational sampling of both enzyme and substrate as well as their interaction, and especially the effect of the solvent. These include the radial distribution function of the water molecules around the catalytically important zinc metal atom, the conformations of the substrate and product molecules and the corresponding RMSF values, critical hydrogen bonds and several catalytically relevant distances. These results are discussed in light of recent experimental and computational evidence, yielding new insights into the elusive catalytic mechanism of this enzyme.  相似文献   

8.
Protein farnesyltransferase (FTase) catalyzes the addition of a farnesyl chain onto the sulfur of a C-terminal cysteine of a protein substrate. Magnesium ions enhance farnesylation catalyzed by FTase by several hundred-fold, with a KMg value of 4 mM. The magnesium ion is proposed to coordinate the diphosphate leaving group of farnesyldiphosphate (FPP) to stabilize the developing charge in the farnesylation transition state. Here we further investigate the magnesium binding site using mutagenesis and biochemical studies. Free FPP binds Mg2+ with a Kd of 120 microM. The 10-fold weaker affinity for Mg2+ observed for the FTase.FPP.peptide ternary complex is probably caused by the positive charges in the diphosphate binding pocket of FTase. Furthermore, mutation of aspartate beta 352 to alanine (D beta 352A) or lysine (D beta 352K) in FTase drastically alters the Mg2+ dependence of FTase catalysis without dramatically affecting the rate constant of farnesylation minus magnesium or the binding affinity of either substrate. In D beta 352A FTase, the KMg increases 28-fold to 110 +/- 30 mM, and the farnesylation rate constant at saturating Mg2+ decreases 27-fold to 0.30 +/- 0.05 s-1. Substitution of a lysine for Asp-beta 352 removes the magnesium activation of farnesylation catalyzed by FTase but does not significantly enhance the rate constant for farnesylation in the absence of Mg2+. In wild type FTase, Mg2+ can be replaced by Mn2+ with a 2-fold lower KMn (2 mM). These results suggest both that Mg2+ coordinates the side chain carboxylate of Asp-beta 352 and that the role of magnesium in the reaction includes positioning the FPP prior to catalysis.  相似文献   

9.
Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.  相似文献   

10.
Protein farnesyltransferase (FTase) catalyzes the post-translational modification of many important cellular proteins, and is a potential anticancer drug target. Crystal structures of the FTase ternary complex illustrate an unusual feature of this enzyme, the fact that the isoprenoid substrate farnesyl diphosphate (FPP) forms part of the binding site for the peptide substrate. This implies that changing the structure of FPP could alter the specificity of the FPP-FTase complex for peptide substrates. We have found that this is the case; a newly synthesized FPP analogue, 3-MeBFPP, is a substrate with three peptide cosubstrates, but is not an effective substrate with a fourth peptide (dansyl-GCKVL). Addition of this analogue also inhibits farnesylation of dansyl-GCKVL by FPP. Surprisingly, the differential substrate abilities of these four peptides with FPP-FTase and 3-MeBFPP-FTase complexes do not correlate with their binding affinities for these isoprenoid-enzyme complexes. The possible mechanistic rationales for this observation, along with its potential utility for the study of protein prenylation, are discussed.  相似文献   

11.
Hicks KA  Hartman HL  Fierke CA 《Biochemistry》2005,44(46):15325-15333
Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I (GGTase I) catalyze the attachment of a farnesyl or geranylgeranyl lipid, respectively, near the C-terminus of their protein substrates. FTase and GGTase I differ in both their substrate specificity and magnesium dependence, where the activity of FTase, but not GGTase I, is activated by magnesium. Many protein substrates of these enzymes contain an upstream polybasic region that is proposed to increase the affinity of the substrate and aid in plasma membrane association. Here, we demonstrate that the addition of an upstream polybasic region to a peptide substrate enhances the binding affinity of FTase approximately 4-fold for the peptide but diminishes the catalytic efficiency of the reaction, reflected by decreases in both the prenylation rate constant and kcat/KM. Specifically, the prenylation rate constant decreases 7-fold at 5 mM MgCl2 for the peptide KKKSKTKCVIM (C-terminal sequence of K-Ras4B) in comparison to TKCVIM. This decrease is accompanied by an alteration in the dependence on magnesium, as the K(Mg) increases from 2.2 +/- 0.1 mM for TKCVIM to 11.5 +/- 0.1 mM for KKKSKTKCVIM. The presence of an upstream polybasic region does not significantly affect GGTase I-catalyzed reactions, as only minimal changes are seen in Kd, kcat/KM, and k(chem) values. Thus, the presence of an upstream polybasic region enhances the dual prenylation of these substrates, by decreasing the catalytic efficiency of farnesylation catalyzed by FTase to a level comparable to that of geranylgeranylation catalyzed by GGTase I.  相似文献   

12.
Protein farnesyltransferase catalyzes the modification of protein substrates containing specific carboxyl-terminal Ca(1)a(2)X motifs with a 15-carbon farnesyl group. The thioether linkage is formed between the cysteine of the Ca(1)a(2)X motif and C1 of the farnesyl group. Protein substrate specificity is essential to the function of the enzyme and has been exploited to find enzyme-specific inhibitors for antitumor therapies. In this work, we investigate the thiol substrate specificity of protein farnesyltransferase by demonstrating that a variety of nonpeptidic thiol compounds, including glutathione and dithiothreitol, are substrates. However, the binding energy of these thiols is decreased 4-6 kcal/mol compared to a peptide derived from the carboxyl terminus of H-Ras. Furthermore, for these thiol substrates, both the farnesylation rate constant and the apparent magnesium affinity decrease significantly. Surprisingly, no correlation is observed between the pH-independent log(k(max)) and the thiol pK(a); model nucleophilic reactions of thiols display a Br?nsted correlation of approximately 0.4. These data demonstrate that zinc-sulfur coordination is a primary criterion for classification as a FTase substrate, but other interactions between the peptide and the FTase.isoprenoid complex provide significant enhancement of binding and catalysis. Finally, these results suggest that the mechanism of FTase provides in vivo selectivity for the farnesylation of protein substrates even in the presence of high concentrations of intracellular thiols.  相似文献   

13.
It is generally accepted that the cytosolic face of the plasma membrane of mammalian cells is enriched in acidic phospholipids due to an asymmetric distribution of neutral and anionic phospholipids in the two bilayer leaflets. However, the phospholipid asymmetry across intracellular membranes is not known. Two models have been proposed for the selective targeting of K-Ras4B, which contains a C-terminal farnesyl cysteine methyl ester adjacent to a polybasic peptide segment, to the cytosolic face of the plasma membrane. One involves electrostatic interaction of the lipidated polybasic domain with anionic phospholipids in the plasma membrane, and the other involves binding of K-Ras4B to a specific protein receptor. To address this issue, we prepared by semi-synthesis a green fluorescent protein variant that is linked to a farnesylated, polybasic peptide corresponding to the K-Ras4B C terminus as well as a variant that contains an all-d amino acid version of the K-Ras4B peptide. As expected based on electrostatics, both constructs showed preferential in vitro binding to anionic phospholipid vesicles versus those composed only of zwitterionic phospholipid. Both constructs fully targeted to the plasma membrane when microinjected into live Chinese hamster ovary and Madin-Darby canine kidney cells. Because the all-d amino acid peptide should be devoid of binding affinity to a putative highly specific K-Ras membrane receptor, these results support an electrostatic basis for the targeting of K-Ras4B to the plasma membrane, and they support an intracellular landscape of phospholipids in which the cytosolic face of the plasma membrane is the most enriched in acidic phospholipids.  相似文献   

14.
Huang C  Hightower KE  Fierke CA 《Biochemistry》2000,39(10):2593-2602
Protein farnesyltransferase is a zinc metalloenzyme that catalyzes the transfer of a 15-carbon farnesyl group to a conserved cysteine residue of a protein substrate. Both electrophilic and nucleophilic mechanisms have been proposed for this enzyme. In this work, we investigate the detailed catalytic mechanism of mammalian protein farnesyltransferase by measuring the effect of metal substitution and/or substrate alterations on the rate constant of the chemical step. Substitution of cadmium for the active site zinc enhances peptide affinity approximately 5-fold and decreases the rate constant for the formation of the thioether product approximately 6-fold, indicating changes in the metal-thiolate coordination in the catalytic transition state. In addition, the observed rate constant for product formation decreases for C3 fluoromethyl farnesyl pyrophosphate substrates, paralleling the number of fluorines at the C3 methyl position and indicating that a rate-contributing transition state has carbocation character. Magnesium ions do not affect the affinity of either the peptide or the isoprenoid substrate but specifically enhance the observed rate constant for product formation 700-fold, suggesting that magnesium coordinates and activates the diphosphate leaving group. These data suggest that FTase catalyzes protein farnesylation by an associative mechanism with an "exploded" transition state where the metal-bound peptide/protein sulfur has a partial negative charge, the C1 of FPP has a partial positive charge, and the bridge oxygen between C1 and the alpha phosphate of FPP has a partial negative charge. This proposed transition state suggests that stabilization of the developing charge on the carbocation and pyrophosphate oxygens is an important catalytic feature.  相似文献   

15.
Two protein prenyltransferase enzymes, farnesyltransferase (FTase) and geranylgeranyltransferase-I (GGTase-I), catalyze the covalent attachment of a farnesyl or geranylgeranyl lipid group to the cysteine of a CaaX sequence (cysteine [C], two aliphatic amino acids [aa], and any amino acid [X]. In vitro studies reported here confirm previous reports that CaaX proteins with a C-terminal serine are farnesylated by FTase and those with a C-terminal leucine are geranylgeranylated by GGTase-I. In addition, we found that FTase can farnesylate CaaX proteins with a C-terminal leucine and can transfer a geranylgeranyl group to some CaaX proteins. Genetic data indicate that FTase and GGTase-I have the same substrate preferences in vivo as in vitro and also show that each enzyme can prenylate some of the preferred substrates of the other enzyme in vivo. Specifically, the viability of yeast cells lacking FTase is due to prenylation of Ras proteins by GGTase-I. Although this GGTase-I dependent prenylation of Ras is sufficient for growth, it is not sufficient for mutationally activated Ras proteins to exert deleterious effects on growth. The dependence of the activated Ras phenotype on FTase can be bypassed by replacing the C-terminal serine with leucine. This altered form of Ras appears to be prenylated by both GGTase-I and FTase, since it produces an activated phenotype in a strain lacking either FTase or GGTase-I. Yeast cells can grow in the absence of GGTase-I as long as two essential substrates are overexpressed, but their growth is slow. Such strains are dependent on FTase for viability and are able to grow faster when FTase is overproduced, suggesting that FTase can prenylate the essential substrates of GGTase-I when they are overproduced.  相似文献   

16.
Sequence dependence of protein isoprenylation   总被引:38,自引:0,他引:38  
Several proteins have been shown to be post-translationally modified on a specific C-terminal cysteine residue by either of two isoprenoid biosynthetic pathway metabolites, farnesyl diphosphate or geranylgeranyl diphosphate. Three enzymes responsible for protein isoprenylation were resolved chromatographically from the cytosolic fraction of bovine brain: a farnesyl-protein transferase (FTase), which modified the cell-transforming Ras protein, and two geranyl-geranyl-protein transferases, one (GGTase-I) which modified a chimeric Ras having the C-terminal amino acid sequence of the gamma-6 subunit of heterotrimeric GTP-binding proteins, and the other (GGTase-II) which modified the Saccharomyces cerevisiae secretory GTPase protein YPT1. In a S. cerevisiae strain lacking FTase activity (ram1), both GGTases were detected at wild-type levels. In a ram2 S. cerevisiae strain devoid of FTase activity, GGTase-I activity was reduced by 67%, suggesting that GGTase-I and FTase activities derive from different enzymes but may share a common genetic feature. For the FTase and the GGTase-I activities, the C-terminal amino acid sequence of the protein substrate, the CAAX box, appeared to contain all the critical determinants for interaction with the transferase. In fact, tetrapeptides with amino acid sequences identical to the C-terminal sequences of the protein substrates for FTase or GGTase-I competed for protein isoprenylation by acting as alternative substrates. Changes in the CAAX amino acid sequence of protein substrates markedly altered their ability to serve as substrates for both FTase and GGTase-I. In addition, it appeared that FTase and GGTase-I had complementary affinities for CAAX protein substrates; that is, CAAX proteins that were good substrates for FTase were, in general, poor substrates for GGTase-I, and vice versa. In particular, a leucine residue at the C terminus influenced whether a CAAX protein was either farnesylated or geranylgeranylated preferentially. The YPT1 C terminus peptide, TGGGCC, did not compete or serve as a substrate for GGTase-II, indicating that the interaction between GGTase-II and YPT1 appeared to depend on more than the 6 C-terminal residues of the protein substrate sequence. These results identify three different isoprenyl-protein transferases that are each selective for their isoprenoid and protein substrates.  相似文献   

17.
Roskoski R  Ritchie PA 《Biochemistry》2001,40(31):9329-9335
Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase-I (GGTase-I) catalyze the prenylation of proteins with a carboxy-terminal tetrapeptide sequence called a CaaX box, where C refers to cysteine, "a" refers to an aliphatic residue, and X typically refers to methionine, serine, or glutamine (FTase), or to leucine (GGTase-I). Marsters and co-workers [(1994) Bioorg. Med. Chem. 2, 949--957] developed inhibitors of FTase with cysteine and methionine attached to an inner hydrophobic benzodiazepine scaffold. We found that the most potent of these compounds (BZA-2B) resulted in the time-dependent inhibition of FTase. The K(i) of BZA-2B for FTase, which is the dissociation constant of the initial complex, was 79 +/- 13 nM, and the K(i)*, which is the overall dissociation of inhibitor for all enzyme forms, was 0.91 +/- 0.12 nM. The first-order rate constant for the conversion of the initial complex to the final complex was 1.4 +/- 0.2 min(-1), and that for the reverse process was 0.016 +/- 0.002 min(-1). The latter rate constant corresponds to a half-life of the final complex of 45 min. Our experiments favor the notion that the inhibitor binds to the FTase--farnesyl diphosphate complex which then undergoes an isomerization to form a tighter FTase*--farnesyl diphosphate--BZA2-B complex. Diazepam, a compound with a benzodiazepine nucleus but lacking amino acid extensions, was a weak (K(i) = 870 microM) but not time-dependent inhibitor of FTase. Cys-Val-Phe-Met and Cys-4-aminobenzoyl-Met were instantaneous and not time-dependent inhibitors of FTase. Furthermore, BZA-4B, with a leucine specificity determinant, was a classical competitive inhibitor of GGTase-I and not a time-dependent inhibitor.  相似文献   

18.
Ras signaling to its downstream effectors appears to include combinations of extracellular-signal-regulated Ras activation at the plasma membrane (PM) and endomembranes, dynamic lateral segregation in the PM, and translocation of Ras from the PM to intracellular compartments. These processes are governed by the C-terminal polybasic farnesyl domain in K-Ras 4B and by the cysteine-palmitoylated C-terminal farnesyl domains in H-Ras and N-Ras. K-Ras 4B has no palmitoylated cysteines. Depalmitoylation/repalmitoylation of H-/N-Ras proteins promotes their cellular redistribution and signaling by mechanisms as yet unknown, possibly involving chaperones. Palmitoylation of H-/N-Ras also promotes their association with 'rasosomes', randomly diffusing nanoparticles that apparently provide a means by which multiple copies of activated Ras and its signal can spread rapidly. Ubiquitination of H-Ras evidently targets it to the endosomes. The polybasic farnesyl domain of K-Ras 4B was shown to act as a target for Ca++/calmodulin, which sequesters the active protein from the PM, thereby facilitating its trafficking to Golgi apparatus and early endosomes. Protein kinase C-dependent phosphorylation of S181 in K-Ras 4B was shown to provide a regulated farnesyl-electrostatic switch on K-Ras 4B, which promotes its translocation to the mitochondria. All these translocation events are characterized by nonconventional trafficking of the farnesyl-modified Ras proteins and seem to govern the selectivity and probably also the robustness of the Ras signal. In this review, we discuss the various modifications and interactions of the farnesylated C-terminus, the trafficking of Ras proteins in the PM and between the PM and the endomembranes, and the relevance of the subcellular localization of Ras for Ras function.  相似文献   

19.
Didehydrofarnesyl diphosphate (delta delta FPP), a fluorescent pentaene analogue of farnesyl diphosphate (FPP), was synthesized using stereoselective Wittig reactions. Although delta delta FPP was not an alternative substrate for yeast protein farnesyltransferase (FTase), the fluorescent analogue was a potent competitive inhibitor with a K(i) value of 8.8 microM (K (m) (FPP) = 27 microM).  相似文献   

20.
Gomez GA  Daniotti JL 《The FEBS journal》2007,274(9):2210-2228
K-Ras is a small G-protein, localized mainly at the inner leaflet of the plasma membrane. The membrane targeting signal of this protein consists of a polybasic C-terminal sequence of six contiguous lysines and a farnesylated cysteine. Results from biophysical studies in model systems suggest that hydrophobic and electrostatic interactions are responsible for the membrane binding properties of K-Ras. To test this hypothesis in a cellular system, we first evaluated in vitro the effect of electrolytes on K-Ras membrane binding properties. Results demonstrated the electrical and reversible nature of K-Ras binding to anionic lipids in membranes. We next investigated membrane binding and subcellular distribution of K-Ras after disruption of the electrical properties of the outer and inner leaflets of plasma membrane and ionic gradients through it. Removal of sialic acid from the outer plasma membrane caused a redistribution of K-Ras to recycling endosomes. Inhibition of polyphosphoinositide synthesis at the plasma membrane, by depletion of cellular ATP, resulted in a similar subcellular redistribution of K-Ras. Treatment of cells with ionophores that modify transmembrane potential caused a redistribution of K-Ras to cytoplasm and endomembranes. Ca2+ ionophores, compared to K+ ionophores, caused a much broader redistribution of K-Ras to endomembranes. Taken together, these results reveal the dynamic nature of interactions between K-Ras and cellular membranes, and indicate that subcellular distribution of K-Ras is driven by electrostatic interaction of the polybasic region of the protein with negatively charged membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号