首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
土壤矿物与微生物相互作用的机理及其环境效应   总被引:4,自引:0,他引:4  
土壤矿物与微生物相互作用是地球表层系统中重要的生态过程.微生物或生物分子与矿物间的吸附(粘附)是两者相互作用的基础.吸附(粘附)是一个由分子间力、静电力、疏水作用力、氢键和空间位阻效应等多种作用力或作用因素共同决定、影响的物理化学过程.因此,微生物和矿物的表面性质如表面电荷、疏水性和它们所处的环境条件如pH、电解质浓度、温度等,都影响着矿物-微生物吸附(粘附)过程.微生物细胞或酶可吸附于矿物表面,其结果是细胞代谢或酶活性会发生明显变化,并进一步影响土壤中诸多相关的生态、环境过程.结合4种典型的初始吸附理论:表面自由能热力学理论、DLVO理论、吸附等温线理论和表面复合物理论及本课题组近年来的研究成果,对土壤矿物与微生物相互作用的类型、机理、作用力和现代研究技术等方面的最新研究进展进行了较为全面的论述,对土壤矿物-微生物相互作用的环境效应进行了讨论,并就该领域今后研究工作的特点及应关注的问题进行了展望.  相似文献   

2.
微生物-矿物相互作用及界面显微分析研究进展   总被引:1,自引:0,他引:1  
微生物-矿物界面的相互作用贯穿着整个生物浸矿过程,在矿物生物浸出中至关重要,受到微生物的代谢特征、矿物表面结构和物质形态及环境条件的多重交叉影响。研究微生物-矿物界面的相互作用相关的微生物选择性吸附、矿物表面元素形态转化和钝化层、微生物铁硫氧化活性和微生物群落以及胞外物质的组成和性质等的演化,有利于了解微生物-矿物界面作用机制及其关键影响因素和影响机制,从而为优化浸出工艺提供科学的理论依据。达到这些目的,界面的(原位)显微分析手段和技术的进步也至关重要。本文对近些年来上述两方面的研究进行了综述。  相似文献   

3.
乙酸对土壤胶体矿物吸附酸性磷酸酶的影响   总被引:2,自引:2,他引:0  
研究了不同pH值、不同浓度乙酸对酸性磷酸酶在土壤胶体和矿物表面吸附的影响,结果表明,在pH2~8的乙酸体系中,酶在胶体矿物表面的最大吸附pH一般出现在蛋白的等电点和矿物的零电荷点(PZC)之间,各土壤胶体和粘粒矿物对酶的吸附量大小顺序为针铁矿》黄棕壤>砖红壤>高岭石>二氧化锰,乙酸浓度对酶在胶体矿物表面的吸附量和吸附结合能具有较显著影响,在0~200mmol·L^-1范围内,随着乙酸浓度的增加,酶吸附量呈现先升高、后降低、再稳定的趋势,而吸附结合能的变化与此相反,并就乙酸对酶在胶体矿物表面吸附影响的可能机理进行了初步探讨。  相似文献   

4.
溶解态硅酸盐在矿物表面的吸附和聚合行为影响矿物在水环境中的稳定性。研究溶解态硅酸盐在矿物表面的聚合行为及其对矿物稳定性的影响具有重要的理论和实际意义。本文研究了溶解态硅酸盐在臭葱石上的吸附动力学,利用衰减全反射红外光谱(ATR-FTIR)表征其吸附行为,并对吸附硅的臭葱石进行了淋溶稳定性分析。结果表明:溶解态硅酸盐与臭葱石在弱酸性环境中同时受吸附机理与受置换反应的控制;在pH3和pH4时,臭葱石吸附硅量较高,红外光谱显示硅在臭葱石表面形成类似于硅酸(SiO_2·xH_2O)的高聚物;此外,含硅臭葱石与臭葱石相比,在pH 4、pH 6和pH 8的淋溶稳定性实验中砷浸出量分别降低了68.1%、52.5%和15.5%。本研究可为有色冶炼含砷废渣的储存及进一步稳定化降低其环境风险提供科学依据。  相似文献   

5.
固定化细胞发酵酒精研究的进展   总被引:1,自引:0,他引:1  
固定化细胞发酵酒精研究的进展许苏葵,何秀良(中国科学院沈阳应用生态研究所,110015)十九世纪初,人们发现某些微生物细胞具有一种吸附在固体物质表面的天然倾向和特殊功能,并以这种方式被束缚、固定起来。当时曾利用这种被吸附的微生物细胞,在滴滤式反应系统...  相似文献   

6.
【目的】研究产胞外分泌物微生物Shewanella putrefaciens CN32对土壤中常见粘土矿物附着态NH_4~+的释放效果及影响机制。【方法】以吸附NH_4~+的蒙脱石、蛭石、伊蒙混层矿物和黑云母为对象,通过监测S. putrefaciens CN32作用下不同粘土释放的NH_4~+含量及过程,以及监测微生物量及释放的胞外聚合物(Extracellular Polymeric Substances,EPS)的含量变化,研究S. putrefaciens CN32作用下不同粘土矿物类型附着态NH_4~+释放的差异性。【结果】粘土矿物附着态NH_4~+含量从高到低依次为蒙脱石蛭石伊蒙混层矿物黑云母(黑云母NH_4~+吸附量极低,会在非生物作用下几乎完全释放),CN32作用下粘土附着态NH_4~+相对释放量依次为蒙脱石伊蒙混层矿物蛭石;然而,尽管CN32有效促进了粘土附着态NH_4~+释放,但释放的NH_4~+并未在溶液中大量累积,而是多被微生物同化吸收转化为生物有机氮(EPS为主)并吸附在粘土表面,且粘土对EPS的吸附能力表现为蒙脱石伊蒙混层矿物蛭石黑云母;由于粘土吸附NH_4~+及EPS都与矿物中的羟基(结构水或层间水)关系密切,推测EPS对矿物羟基的竞争吸附可能是CN32促进NH_4~+释放的重要原因之一。【结论】以上结果表明,产EPS微生物S. putrefaciens CN32能够促进各类粘土矿物的附着态NH_4~+释放,但释放的NH_4~+可以通过微生物作用转化为有机氮,从而在减少NH_4~+流失的同时增加土壤氮肥的生物可利用性,因此微生物在降低土壤氮肥流失、转化土壤氮肥污染过程中可能起到了重要作用,也揭示了深入系统地分析不同类型土壤(粘土类型不同)中粘土附着态NH_4~+在不同功能微生物作用下的迁移转化过程,是精准评估土壤氮肥施用效率及流失风险的前提之一。  相似文献   

7.
细菌对重金属吸附和解毒机制的研究进展   总被引:1,自引:0,他引:1  
随着采矿、冶炼和电镀等工业的不断发展,重金属对环境造成的污染也日益严重。近年来提出的微生物修复法,因其成本低和无二次污染等优点而引起国内外学者的广泛关注。目前,用来去除环境中重金属的微生物主要有真菌、藻类、放线菌及细菌等,其中细菌对重金属的微生物吸附和解毒机制研究较为广泛。将从细胞结构的角度,即细菌细胞外部、细胞表面和细胞内部等三方面概述重金属胁迫下细菌的吸附和解毒机制研究进展,主要内容包括细胞外部的沉淀机制、细胞表面的吸附机制以及细胞内部的解毒机制,并提出未来可能的发展方向,旨为重金属污染的微生物修复技术提供理论依据和实践参考。  相似文献   

8.
矿物是无机自然界吸收与转化能量的重要载体,其与微生物的胞外电子传递过程体现出矿物电子能量对微生物生长代谢与能量获取方式的影响。根据电子来源与产生途径,以往研究表明矿物中变价元素原子最外层或次外层价电子与半导体矿物导带上的光电子是微生物可以利用的两种不同胞外电子能量形式,其产生及传递方式与微生物胞外电子传递的电子载体密切相关。在协同微生物胞外电子传递过程中,矿物不同电子能量形式之间既有相似性亦存在着差异。反过来,微生物胞内-胞外电子传递途径也影响对矿物电子能量的吸收与获取,进而对微生物生长代谢等生命活动产生影响。本文在阐述矿物不同电子能量形式产生机制及其参与生物化学反应的共性和差异性特征基础上,综述了微生物获取矿物电子能量所需的不同电子载体类型与传递途径,探讨了矿物不同电子能量形式对微生物生长代谢等生命活动的影响,展望了自然条件下微生物利用矿物电子能量调节其生命活动、调控元素与能量循环的新方式。  相似文献   

9.
MATH法表征环境微生物细胞表面疏水性的研究进展   总被引:1,自引:0,他引:1  
环境微生物的细胞表面疏水性对其生长代谢过程以及在环境领域的应用效率具有重要影响。目前用于测试细胞表面疏水性最常用的方法是碳氢吸附能力(Microbial adhesion to hydrocarbons,MATH),该方法因具有操作简便、有一定的准确度等优点在环境、生物工程、医学、食品等领域应用广泛。本文综述了MATH法在环境微生物领域中的污泥絮体性能表征、有机物降解、膜污染和破乳方面的应用,同时介绍了MATH法在实验操作、计数方法和数据分析方面的优化。最后展望了该方法今后的研究方向。  相似文献   

10.
高效、低耗、环境友好的重金属废水处理方法是当前的研究热点之一,微生物吸附法因具有优良的吸附性能、不产生二次污染、环境友好性等优点,在重金属废水处理中有巨大的应用潜力。细菌、真菌、藻类等微生物可通过静电吸附、络合作用等将重金属结合到细胞壁表面。但未经处理的微生物往往吸附效果不佳,通过对微生物进行物理、化学等方法的改性处理,能显著增加微生物与重金属离子结合的活性位点,提高去除效果。本文对国内外微生物的改性方法以及改性微生物吸附剂对废水中重金属的吸附能力和影响因素进行阐述,讨论微生物吸附剂存在的相关问题,并对其未来的研究方向做简要展望。  相似文献   

11.
In this study, we compared the adsorption of the gram-positive bacterium Bacillus subtilis with adsorption of the gram-negative bacterium Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains as a function of pH and bacteria: mineral mass ratio. We studied metabolically-inactive cells in order to focus on the initial bacterial attachment mechanisms. The data show that the presence of Fe-oxyhydroxide-coatings on quartz surfaces significantly enhances the adsorption of bacteria and that in general the extent of adsorption decreases with increasing pH and with decreasing bacteria: mineral mass ratio. B. subtilisadsorbs to a greater extent than does P. mendocina onto the surface of the Fe-coated quartz. The adsorption behavior appears to be controlled by the overall surface charge of both bacterial and mineral surfaces. We model the adsorption data using a semi-empirical chemical equilibrium model that accounts for the site speciation of the adsorbing surfaces. Models describing bacterial adsorption to Fe-oxyhydroxide-coated quartz can account for changes in pH and bacteria: mineral mass ratio using one set of equilibrium constants.  相似文献   

12.
Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The kinetics of the bioleaching of ZnS concentrate by Thiobacillus ferrooxidans was studied in a well-mixed batch reactor. Experimental studies were made at 30 degrees C and pH 2.2 on adsorption of the bacteria to the mineral, ferric iron leaching, and bacterial leaching. The adsorption rate of the bacteria was fairly rapid in comparison with the bioleaching rate, indicating that the bacterial adsorption is at equilibrium during the leaching process. The adsorption equilibrium data were correlated by the Langmuir isotherm, which is a useful means for predicting the number of bacteria adsorbed on the mineral surface. The rate of chemical leaching varied with the concentration of ferric iron, and the first-order reaction rate constant was determined. Bioleaching in an iron-containing medium was found to take place by both direct bacterial attack on the sulfide mineral and indirect attack via ferric iron. In this case, the ferric iron was formed from the reaction product (ferrous iron) through the biological oxidation reaction. To develop rate expressions for the kinetics of bacterial growth and zinc leaching, the two bacterial actions were considered. The key parameters appearing in the rate equations, the growth yield and specific growth rate of adsorbed bacteria, were evaluated by curve fitting using the experimental data. This kinetic model allowed us to predict the liquid-phase concentrations of the leached zinc and free cells during the batch bioleaching process.  相似文献   

13.
Previous studies revealed the thermodynamic properties of DNA adsorption on pure minerals or biomasses; however, there has been little attempt to develop such studies on bacteria–mineral composites. Equilibrium adsorption experiments, attenuated total reflectance Fourier transform infrared spectroscopy, and isothermal titration calorimetry were employed to investigate the adsorption of DNA by Bacillus subtilis, Pseudomonas putida, and their composites with minerals. Similar capacity and affinity were observed for DNA adsorption on two bacterial cells. However, different patterns were found in the adsorption of DNA by bacteria–mineral composites. The Gram-positive bacterium B. subtilis enhanced the adsorption of DNA on its mineral composites compared with their individual components, while the composites of Gram-negative bacterial cells with kaolinite and goethite bound lower amounts of DNA than the predicted values. The thermodynamic parameters and the Fourier transform infrared spectra showed that van der Waals force and hydrogen bonding are responsible for the DNA adsorption on B. subtilis–minerals and P. putida–kaolinite. By contrast, the entropy increases of excluded water rearrangement and dehydration effect play key roles in the interaction between DNA and P. putida–montmorillonite/goethite composites.  相似文献   

14.
J Chen  B Koopman 《Applied microbiology》1997,63(10):3941-3945
Simple, efficient, and safe tagging methods are desired in short-term microbial transport studies such as in the study of filtration systems for water and wastewater treatment. Suitability of selected fluorochromes as bacterial tagging agents in transport studies was evaluated on the basis of stability of stained cells and the effect of staining on bacterial surface characteristics and interaction with granular media. Surface properties were characterized by zeta potential and microbial adhesion to hydrocarbons. The effect of staining on interactions between bacteria and porous media was evaluated in terms of removal of bacteria in batch adsorption tests using sand coated with aluminum hydroxide to enhance adsorption. The DNA-specific fluorochrome 4',6-diamidino-2-phenylindole (DAPI) had generally negligible effects on bacterial surface properties and interaction with sand, as indicated in batch adsorption tests using pure cultures (Escherichia coli or Acinetobacter sp.) and wastewater bacteria. Cells stained with DAPI were stable for 48 h at 4 or 20 degrees C. Other nucleic acid fluorochromes tested had different but significant effects on bacterial cells and produced less stable fluorescence. Since transport through porous media is modulated by surface properties, it may be concluded based on these results that the choice of fluorochromes is critical in microbial transport studies. DAPI appeared to be a promising tagging agent. Time dependence of fluorescence of stained cells may limit the use of fluorochrome-tagged cells in long-term transport studies.  相似文献   

15.
Adsorption kinetics of laterally and polarly flagellated Vibrio.   总被引:27,自引:4,他引:23       下载免费PDF全文
The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral flagella, bacterial adsorption did not follow the Langmuir adsorption isotherm; instead, proportional adsorption kinetics were observed. The adsorption of some polarly flagellated bacteria exhibited surface saturation kinetics. However, the binding index (the product of the number of binding sites and bacterial affinity to the surface) of polarly flagellated bacteria differed significantly from that of laterally flagellated bacteria, suggesting that polarly flagellated bacteria adsorb to chitin by a different mechanism from that used by the laterally flagellated bacteria. From the results of dual-label adsorption competition experiments, in which polarly flagellated V. cholerae competed with increasing concentrations of laterally flagellated V. parahaemolyticus, it was observed that laterally flagellated bacteria inhibited the adsorption of polarly flagellated bacteria. In contrast, polarly flagellated bacteria enhanced the adsorption of V. cholerae. In competition experiments, where V. parahaemolyticus competed against increasing concentrations of other bacteria, polarly flagellated bacteria enhanced V. parahaemolyticus adsorption significantly, whereas laterally flagellated bacteria only slightly enhanced the process. The direct correlation observed between surface saturation kinetics, the production of lateral flagella, and the ability of laterally flagellated bacteria to inhibit the adsorption of polarly flagellated bacteria suggests that lateral flagella represent a component of bacterial structure that is important in the adsorption of laterally flagellated bacteria to surfaces. A model for adsorption events of laterally flagellated bacteria is proposed, based on the evidence presented.  相似文献   

16.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

17.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

18.
Abstract

Atomistic simulation techniques are now able to model the structure of mineral surfaces at the atomic level. In this paper we begin to address the question of whether surface reactivity can be studied reliably by modelling the surface reactivity of calcite, fluorite and forsterite under aqueous conditions. We first used energy minimisation techniques to investigate the interaction between the minerals calcite and fluorite with water and methanoic acid. The relative adsorption energies suggest that methanoic acid preferentially adsorbs onto fluorite surfaces, while water adsorbs preferentially onto calcite as inferred from experiments on mineral separation. Molecular Dynamics simulations were also used to model the effect of temperature on the adsorption of water on the calcite {1014} and fluorite {111} surfaces. Furthermore we used these techniques to model point defect formation at surfaces. We are also interested in modelling the competition between associative and dissociative adsorption on mineral surfaces. Simulations of adsorption of water on the low-index forsterite surfaces have predicted the adsorption energies and equilibrium morphology. The calculated equilibrium morphology adequately reproduces the experimental morphology of forsterite suggesting that the relative stabilities of the surfaces, both unhydrated and hydroxylated, are calculated correctly.  相似文献   

19.
兰科植物内生细菌物种多样性及其促生机理研究进展   总被引:3,自引:0,他引:3  
内生细菌影响兰科植物菌根形成和共生关系的稳定性,在兰科植物的生活史中起着重要作用。内生细菌通过分泌植物激素、采用光合作用、生物固氮或促进矿质营养的循环以及产生铁载体、合成其他活性物质等途径来促进兰科植物生长发育。综述了兰科植物内生细菌物种多样性的研究方法及其对兰科植物的促生机理,基于兰科植物与共生微生物的密切关系,认为内生细菌间、内生细菌与兰科植物菌根真菌间的互作是揭示兰科植物与内生细菌互作机理的重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号