首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

2.
Ubiquitin activating enzyme (UAE, UBE1, or E1) and seven known homologous “E1s” initiate the conjugation pathways for ubiquitin and 16 other ubiquitin-like modifiers (ULMs) found in humans. The initial step catalyzed by E1s uses adenosine triphosphate (ATP) to adenylate the C terminus of the appropriate ULM and results in the production of inorganic pyrophosphate (PPi). The mechanism of these enzymes can be studied with assays that measure the rate of ULM-dependent ATP:PPi exchange. The traditional method follows the initial velocity of [32P]PPi incorporation into ATP by capturing the nucleotide on activated charcoal powder to separate it from excess [32P]PPi and then measuring [32P]ATP in a scintillation counter. We have modified the method by using charcoal paper to capture the nucleotide and a phosphorimager to quantify the [32P]ATP. The significant increase in throughput that these modifications provide is accomplished without any sacrifice in sensitivity or accuracy compared with the traditional method. To demonstrate this, we reproduce and extend the characterization of the NEDD8 activating enzyme.  相似文献   

3.
Intact A431 cells were labeled with [gamma-32P]ATP. The major phosphorylation product of the ecto-kinase activity of A431 cells had the molecular mass of 170 kd and was identified as EGF receptor by specific immunoprecipitation. This phosphorylation was not stimulated by EGF added to the reaction buffer, but replacement of MgCl2 by MnCl2 in the buffer remarkably stimulated phosphorylation. An exogenous protein substrate, alpha-casein, was also phosphorylated by intact A431 cells. The analyses for phospho-amino acids of both EGF receptor and alpha-casein revealed that phosphorylation occurred mainly at phosphotyrosine residues. Tryptic phospho-peptides of the EGF receptor of intact A431 cells labeled with [gamma-32P]ATP were fractionated by HPLC. The elution patterns were essentially the same as that of the autophosphorylated EGF receptor, indicating that the phosphorylation sites of EGF receptor labeled in vivo with [gamma-32P]ATP are located in three tyrosine residues in the carboxyl terminus. These results indicate that the carboxyl-terminal tyrosine kinase domain of a small fraction of the EGF receptor molecules of an A431 cell is exposed on the outer surface of the cells.  相似文献   

4.
Ubiquitin adenylate: structure and role in ubiquitin activation   总被引:2,自引:0,他引:2  
A L Haas  J V Warms  I A Rose 《Biochemistry》1983,22(19):4388-4394
The acid precipitate of the ubiquitin activating enzyme after reaction with ATP and ubiquitin contains one enzyme equivalent of ubiquitin adenylate in which the carboxyl-terminal glycine of ubiquitin and AMP are in an acyl-phosphate linkage. The recovered ubiquitin adenylate has the catalytic properties proposed for it as a reaction intermediate. Thus, upon reaction with fresh enzyme in the absence of Mg2+ or ATP, the product complex, E-ubiquitin . AMP-ubiquitin, is formed. This complex is capable of generating ubiquitin-protein isopeptide derivatives when added to a reticulocyte fraction that catalyzes protein conjugation. This reproduces the effect previously shown to require ubiquitin, ATP, and Mg2+. In the presence of activating enzyme, ubiquitin adenylate is converted to ATP and free ubiquitin in a step requiring PPi and Mg2+. On the basis of studies of [32P]PPi/nucleoside triphosphate exchange, the activating enzyme could be used to generate 2'-deoxy-AMP-, 2'-deoxy-IMP-, and 2'-deoxy-GMP-ubiquitin but not pyrimidine nucleotide-ubiquitin derivatives. The enzyme shows a modest preference for the pro-S diastereomers of adenosine 5'-O-(1-thiotriphosphate) and adenosine 5'-O-(2-thiotriphosphate). Inorganic phosphate, arsenate, methyl phosphate, and tripolyphosphate, but not nucleoside triphosphates, can serve as alternate substrates in place of PPi in the reverse of ubiquitin adenylate formation. Therefore, the enzyme catalyzes the unusual reaction ATP + Pi in equilibrium ADP + PPi in the presence of ubiquitin.  相似文献   

5.
Incubation of bovine tryptophanyl-tRNA synthetase (EC 6.1.1.2) deprived of endogenous tryptophan, with [14C]ATP and without [gamma-32P]ATP, causes an appearance of radioactivity in protein due to formation of adenylated enzyme, [14C]AMP-E. Examination of the properties of the [14C]AMP-E thus obtained led to the conclusion that AMP is linked to the protein molecule via a macroergetic phosphoanhydride bond. ATP is formed when AMP-E is incubated with PPi. However, no tryptophanyl adenylate formation was observed when AMP-E was treated with tryptophan. The functional role of AMP-E remains obscure.  相似文献   

6.
Incorporation of 32P from [gamma-32P]ATP into tyrosine residues of the insulin-like growth factor (IGF)-II receptor was observed in a Triton X-100-insoluble fraction of rat adipocyte plasma membranes. IGF-II receptor phosphorylation proceeded to a stoichiometry of approximately 0.5 mol of phosphate/IGF-II binding site after 10 min of incubation at 4 degrees C. A Km for ATP of 6 microM was calculated for this phosphorylation reaction. Addition of IGF-II caused an approximately 2-fold increase in tyrosine phosphorylation of the IGF-II receptor in this preparation. In contrast, phosphorylation of angiotensin II by the Triton X-100 washed membranes was not stimulated by IGF-II. Incubation of purified receptor immobilized on IGF-II agarose or of receptor-enriched low density microsomal membranes with [gamma-32P]ATP did not result in appreciable incorporation of [32P]phosphate into the IGF-II receptor nor into exogenous substrates. These data suggest that the IGF-II receptor is not a tyrosine protein kinase capable of autophosphorylation but that it is a substrate for a tyrosine protein kinase endogenous to the adipocyte plasma membrane. The stimulatory effect of IGF-II on the tyrosine phosphorylation of its receptor may be due to a conformational change which converts the receptor to a better substrate for this tyrosine kinase.  相似文献   

7.
The respective contribution of exogenous and intramitochondrially formed ATP to D-glucose phosphorylation by mitochondria-bound hexokinase was examined in both rat liver and pancreatic islet mitochondria by comparing the generation of D-glucose 6-[32P]phosphate from exogenous [gamma-32P]ATP to the total rate of D-[U-14C]glucose phosphorylation. In liver mitochondria, the fractional contribution of exogenous ATP to D-glucose phosphorylation ranged from 4 to 74%, depending on the availability of endogenous ATP formed by either oxidative phosphorylation or in the reaction catalyzed by adenylate kinase. Likewise, in islet mitochondria exposed to exogenous ATP but deprived of exogenous nutrient, about 60% of D-glucose phosphorylation was supported by mitochondrial ATP. Such a fractional contribution was further increased in the presence of ADP and succinate, and suppressed by mitochondrial poisons. It is concluded that, in islet like in liver mitochondria, mitochondrial ATP is used preferentially to exogenous ATP as a substrate for D-glucose phosphorylation by mitochondria-bound hexokinase. This may favour the maintenance of a high cytosolic ATP concentration in glucose-stimulated islet cells.  相似文献   

8.
Dark-adapted pure bovine rod outer segments (ROS) (A280/A500--2.1) can be phosphorylated in the presence of [gamma-32P]ATP and [gamma-32P]GTP. The constant levels of phosphorylation, reached within 10--15 min, are 100 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP and 2--4 pmol 32P/nmol of rhodopsin for [gamma-32P]GTP. These processes are not controlled by 10(-4)--10(-8) cAMP, cGMP or Ca2+, but are inhibited at higher concentrations of these agents. In the presence of histone the constant level of phosphorylation is increased up to 200 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP, but is not changed when [gamma-32P]GTP is used. 10(-5) M cAMP is found to activate the phosphorylation in the presence of histone and [gamma-32P]ATP by 5--6 times. All this evidences that ROS contains cAMP-dependent protein kinase, which utilizes ATP, but not GTP. Moreover, ROS contains cyclic nucleotides- and Ca2+-independent protein kinase. These protein kinases are the ROS endogenous enzymes. This is shown in experiments on separation of pure ROS in a sucrose density gradient.  相似文献   

9.
Incubation of a highly purified bovine spleen protein tyrosine kinase with [gamma-32P]ATP and Mg2+ resulted in a gradual radioactive labeling of the protein kinase (50 kDa) with no change in the protein kinase activity toward angiotensin II. On the other hand, treatment of the protein tyrosine kinase with an immobilized alkaline phosphatase caused essentially complete loss in the kinase activity, which could be restored by incubation of the enzyme with ATP and Mg2+. By using the alkaline phosphatase-treated kinase, time courses of the protein phosphorylation and the enzyme activation were demonstrated to correlate closely. These results indicate that this protein tyrosine kinase relies on autophosphorylation for activity and that the purified enzyme usually exists in a fully phosphorylated state. The radioactive labeling of the purified kinase during incubation with [gamma-32P]ATP resulted from a phosphate exchange reaction: the exchange of [gamma-32P]phosphate of ATP with the protein bound phosphate as previously suggested (Kong, S.K., and Wang, J.H. (1987) J. Biol. Chem. 262, 2597-2603). It could be shown that the autophosphorylation of phosphatase-treated tyrosine kinase was strongly inhibited by the substrate angiotensin II, whereas the exchange reaction carried out with untreated tyrosine kinase was not. Autophosphorylation is suggested to be an intermolecular reaction since its initial rate is proportional to the square of the protein concentration.  相似文献   

10.
Cultures of cerebellar granule neurons have been utilized to examine morphological and biochemical consequences of methyl mercury (MeHg). Exposure to MeHg for 24 h was found to exert toxic effects at concentrations below 1 microM characterized by neuron degeneration and neuritic varicosities. Dose-response and time course profiles for cell death were established using the 51Cr release assay, which revealed that 1 microM MeHg produced 15% cell death at 24 h, progressing to 50% at 48 h. Labeling of cultures with [32P]orthophosphate following 24-h exposure to 1 microM MeHg disclosed abnormalities in both protein and lipid phosphorylation. After 24-h exposure to 5 microM MeHg, phospholabeling of protein and lipid increased 174 and 128%, respectively, compared with controls. This stimulation of phosphorylation appeared to be neuron specific since cultures enriched in cerebellar glial cells and devoid of granule neurons displayed dose-dependent inhibition of total phosphorylation. Measurement of 32P labeling of ATP using a cyclic AMP-dependent protein kinase assay in conjunction with the firefly luciferase assay for ATP indicated no significant change in either total ATP levels or [32P]ATP specific activity at 1 or 4 h as a function of [MeHg]. Studies measuring 32P-phosphoprotein turnover indicated that MeHg had no effect on intracellular protein phosphatase activity. We conclude that one of the manifestations associated with in vitro cerebellar granule cell neurotoxicity is an abnormality in protein phosphorylation that is independent of [32P]ATP specific activity and protein phosphatase activity.  相似文献   

11.
The mechanism of action of purified wheat germ RNA ligase has been examined. ATP was absolutely required for the ligation of substrates containing 5'-OH or 5'-P and 2',3'-cyclic P or 2'-P termini. Ligation of 1 mol of 5'-P-2',3'-cyclic P-terminated poly(A) was accompanied by the hydrolysis of 1 mol of ATP to 1 mol each of AMP and PPi. Purified RNA ligase catalyzed an ATP-PPi exchange reaction, specific for ATP and dATP, and formed a covalent enzyme-adenylate complex that was detected by autoradiography following incubation with [alpha-32P]ATP and separation of the products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein doublet with a molecular weight of approximately 110 kDa, the major product detected by silver staining, was labeled in these reactions. Isolated E-AMP complex was dissociated by the addition of ligatable poly(A), containing 5'-P-2',3'-cyclic P termini, to yield AMP and by the addition of PPi to yield ATP. The unique feature of the reactions leading to an exchange reaction between ATP and PPi and to the formation of an E-AMP complex was their marked stimulation (up to 400-fold) by the addition of RNA. This property distinguishes the wheat germ RNA ligase from other known RNA and DNA ligases which catalyze ATP-PPi exchange reactions and form E-AMP complexes in the absence of substrate. Thus, RNA appears to function in two capacities in the wheat germ system: as a cofactor, to stimulate the reaction of the enzyme with ATP, and as an authentic substrate for ligation.  相似文献   

12.
We have previously reported the occurrence of two endogenous protein phosphorylation systems in mammalian brain that are enhanced in the presence of 3-phosphoglycerate (3PG) and ATP. We present here a study of one of these systems, the phosphorylation of the 72-kDa protein (3PG-PP72). This system was separated into the substrate, 3PG-PP72, and a kinase by ammonium sulfate fractionation, hydroxyapatite chromatography, and hydrophobic interaction HPLC. The substrate protein was shown to be directly phosphorylated with [1-32P]1,3-bisphosphoglycerate [( 1-32P]1,3BPG) with an apparent Km of 1.1 nM. Nonradioactive 1,3BPG inhibited 32P incorporation in the presence of [gamma-32P]ATP and 3PG. Phosphopeptide mapping and phosphoamino acid analyses indicated that the site of phosphorylation of 3PG-PP72 observed in the presence of 3PG and ATP is a serine residue identical to that observed with [1-32P]1,3BPG. Moreover, [32P]phosphate incorporated into 3PG-PP72 in the presence of 3PG and ATP was removed by subsequent incubation with glucose-1-phosphate or glucose-6-phosphate. Finally, 3PG-PP72 showed chromatographic behaviors identical to those of glucose-1,6-bisphosphate (G1,6P2) synthetase. Based upon these observations, we conclude that 3PG-PP72 is G1,6P2 synthetase and that it is phosphorylated directly by 1,3BPG, which is formed from 3PG and ATP by 3PG kinase present in a crude 3PG-PP72 preparation.  相似文献   

13.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Incubation of hepatocytes with [32P]orthophosphate resulted in the incorporation of 32P into material that is precipitated by reaction with antibodies to ATP citrate lyase. The amount of radioactivity precipitated was decreased when unlabeled, purified ATP citrate lyase was added to extracts of hepatocytes that had been incubated with [32P]orthophosphate. Addition of glucagon to hepatocytes that had been preincubated with [32P]orthophosphate resulted in a 56% increase in acid-stable 32P in the trichloroacetic acid-insoluble portion of immunoprecipitates. Catalytic phosphate bound to ATP citrate lyase reaction with ATP and Mg2+ is acid-labile; thus, glucagon-dependent phosphorylation is distinguished from the catalytic phosphate. When hepatocytes were incubated in the absence of [32P]orthophosphate and extracted in a medium containing [gamma-32P]ATP, no acid-stable 32P was present in immunoprecipitates. This indicates that the incorporation into ATP citrate lyase of acid-stable phosphate occurs prior to extraction of the enzyme. Preliminary studies, using a procedure that allows for measurement of enzyme activity starting 1 min after beginning the extraction of lyase from hepatocytes, have shown no difference in lyase activity when hepatocytes are treated with or without glucagon.  相似文献   

15.
Bound [32P]ATP is found on deenergized, washed chloroplast thylakoids which were illuminated in the presence of ADP and [32P]Pi. Tight binding of [32P]ATP occurred both during and after energization. Different classes of bound [32P]ATP were distinguished on the basis of their rates of formation, susceptibility to hexokinase and displacement by unlabeled ATP. 1. The rates of formation and discharge of the rapidly labeled tightly bound ATP class were much lower than that of ATP formation. The level of this bound ATP saturates at lower concentrations of substrates than does the rate of phosphorylation. Unlabeled ATP, present in the reaction medium, displaces the rapidly labeled tightly bound ATP without affecting the rate of phosphorylation. 2. We therefore conclude that the rapidly labeled bound ATP class does not fulfill the requirements expected for a catalytic intermediate and that the nucleotide tight binding site(s) on the ATP synthetase differ from the catalytic site(s) for ATP formation. 3. Since the rapidly labeled tightly bound [32P]ATP is not abolished by high concentrations of hexokinase, but is nevertheless displaced by exogenous ATP, we propose that tight binding of ATP to non-catalytic sites occurs via a free species of newly synthesized ATP which diffuses slowly to the medium from a space accessible to ATP but not to hexokinase.  相似文献   

16.
The platelet content of PPi is 1.90 +/- mumol/10(11) platelets (S.E.M., n = 19) or about 10.5 nmol/mg of protein, several hundred times that found for rat liver. Some 80% of this PPi is secreted by platelets treated with thrombin with a time course and dose-response relationship similar to secretion of ATP, ADP and 5-hydroxytryptamine (serotonin) from the platelet dense granules. During platelet aggregation induced by ADP and adrenaline, substantial amounts of PPi were secreted, but no release of acid hydrolases was observed. Subcellular-fractionation studies showed that the PPi is highly enriched in the same fraction that contains the storage organelles which store ATP, ADP, Ca2+ and 5-hydroxytryptamine. Inorganic pyrophosphatase was present mainly in the soluble fraction and in the mitochondria. Secretion studies done with platelets prelabelled with [32P]Pi showed that the sequestered PPi was relatively metabolically inactive, as is the ATP and ADP in the storage organelles. The possible participation of PPi in the formation of a bivalent-cation-nucleotide complex associated with amine storage is discussed.  相似文献   

17.
1. Conditions for binding of [gamma-32P]ATP to bovine brain Na+,K+-stimulated ATPase were investigated by the indirect technique of measuring the initial rate of 32P-labelling of the active site of the enzyme. 2. At 100 muM [gamma-32P]ATP in the presence of 3 mM MgCl2, approximately the same very high rate of formation of [32P]phosphoenzyme was obtained irrespective of whether [gamma-32P]ATP was added to the enzyme simultaneously with, or 70 ms in advance of the addition of NaCl. A comparatively slow rate of phosphorylation was obtained at 5 muM[gamma-32P]ATP without preincubation. However, on preincubation of the enzyme with 5 muM[gamma-32P]ATP a rate of formation of [32P]phosphoenzyme almost as rapid as at 100 muM[gamma-32P]ATP was observed. 3. A transient [32P]phosphoenzyme was discovered. It appeared in the presence of K+, under conditions which allowed extensive binding of [gamma-32P]-ATP. The amount of [gamma-32P]ATP that could be bound to the enzyme seemed to equal the amount of [32P] phosphorylatable sites. 4. The formation of the transient [32P] phosphoenzyme was inhibited by ADP. The transient [32P] phosphoenzyme was concluded mainly to represent the K+-insensitive and ADP-sensitive E1-32P. 5. When KCl was present in the enzyme solution before the addition of NaCl only a comparatively slow rate of phosphorylation was observed. On preincubation of the enzyme with [gamma-32]ATP an increase in the rate of formation of [32P] phosphoenzyme was obtained, but there was no transient [32P]-phosphoenzyme. The transient [32P]phosphoenzyme was, however, detected when the enzyme solution contained NaCl in addition to KCl and the phosphorylation was started by the addition of [gamma-32P]ATP.  相似文献   

18.
Insulin action on [32P]-phosphate incorporation into brain membranes was determined. Hippocampal homogenate tissue was phosphorylated with [32P]-ATP, and insulin was introduced at various times before or after ATP addition. With 50 microM Mg++ in the medium, insulin selectively stimulated the phosphorylation of a 47kD phosphoprotein, Protein F1. This effect required the prior presence of ATP. No effect of insulin on other phosphoproteins, or on [32P]-phosphate incorporation into TCA-precipitated material, was observed under these conditions. At 1 mM Mg++, insulin selectively decreased the phosphorylation of the alpha-subunit of pyruvate dehydrogenase. Insulin had no effect on other phosphoproteins, or on [32P]-phosphate incorporation into TCA-precipitated material under these conditions. The present study suggests a role for insulin in the modulation of brain protein phosphorylation. Since Protein F1 is phosphorylated by exogenous C kinase, and is likely the CNS-specific B-50 protein, these data also indicate a brain-specific function for insulin, possibly by action on a Ca++/phospholipid protein kinase.  相似文献   

19.
Protein phosphorylation was investigated in the bacterium Acinetobacter calcoaceticus both in vivo and in vitro. In cells grown with [32P]orthophosphate, several radioactive phosphoproteins were detected by gel electrophoresis and autoradiography. These proteins were shown to contain phosphoserine, phosphothreonine, and a relatively large proportion of phosphotyrosine residues. Incubation of cellular extracts with [gamma-32P] ATP also resulted in the phosphorylation of several proteins. At least four of them, namely an 81-kDa protein, were modified at tyrosine. No protein labeling occurred when extracts were incubated with [gamma-32P] ATP or [14C]ATP. Moreover, phosphoproteins were insensitive to snake venom phosphodiesterase. All together these results indicate that A. calcoaceticus harbors different protein kinases including a protein-tyrosine kinase activity. Further analysis of this activity showed that it has little, if any, functional similarity with eukaryotic protein-tyrosine kinases.  相似文献   

20.
Crude extracts of maize leaf tissue catalysed the phosphorylation of AMP by 32PPi in the presence of phosphoenolpyruvate (PEP). The reaction was enhanced by F? and NH4+. The optimum concentrations of AMP, PEP and PPi were 0.3, 10 and 1 mM, respectively. Under these conditions, ca75% of the AMP phosphorylated by 32PPi was present as ATP and ca25 % as ADP. The activity was reversibly cold labile. The specific activity of crude extracts in the presence of F? was proportional to enzyme concentration only at protein concentrations < 25,μg/ml. Partially purified pyruvate, phosphate dikinase (PPD) from maize leaf quantitatively phosphorylated AMP to ATP in a (PEP plus PPi)-dependent reaction with the concomitant production of 0.9 mol of pyruvate per mol of AMP phosphorylated. It was concluded that (PEP plus PPi)-dependent phosphorylation of AMP provides a reliable method for estimating PPD activity in crude extracts of maize. Crude maize extracts also catalysed 32Pi-ATP and 32PPi-ATP exchange but these activities were not specific for PPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号