首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
J Marra  J Israelachvili 《Biochemistry》1985,24(17):4608-4618
We report direct measurements of the full interbilayer force laws (force vs. distance) between bilayers of various phosphatidylcholines and phosphatidylethanolamine in aqueous solutions. Bilayers were first deposited on molecularly smooth (mica) surfaces and the interbilayer forces then measured at a resolution of 1 A. Three types of forces were identified: attractive van der Waals forces, repulsive electrostatic (double-layer) forces, and (at short range) repulsive steric hydration forces. Double-layer forces, which arise from ion binding, were insignificant in monovalent salt solutions, e.g., NaCl up to 1 M, but were already present in solutions containing millimolar levels of CaCl2 and MgCl2, giving rise to forces in excellent agreement with theory. Ca2+ binds more strongly than Mg2+, and both bind less to lecithin bilayers in the fluid state (T greater than Tc). The plane of charge coincides with the location of the negative phosphate groups, while the effective plane of origin of the van der Waals force is 4-5 A farther out. In water, the adhesion energies are in the range 0.10-0.15 erg/cm2 for lecithins and approximately 0.8 erg/cm2 for phosphatidylethanolamine. The adhesion energies vary on addition of salt due to changes in the repulsive double-layer and hydration forces rather than to a change in the attractive van der Waals force. The short-range repulsive forces which balance the van der Waals force at separations of 10-30 A are due to a combination of hydration and steric repulsions, the latter arising from thermal motions of head groups and thickness fluctuations of fluid bilayers (above Tc). It is also concluded that bilayer fusion is not simply related to the interbilayer force law.  相似文献   

2.
Protein-protein interactions have been measured for a mutant (D101F) lysozyme and for native lysozyme in concentrated solutions of ammonium sulfate at pH 7 and sodium chloride at pH 4.5. In the mutant lysozyme, a surface aspartate residue has been replaced with a hydrophobic phenylalanine residue. The protein-protein interactions of D101F lysozyme are more attractive than those of native lysozyme for all conditions studied. The salt-induced attraction is correlated with a solvation potential of mean force given by the work required to desolvate the part of the protein surfaces that is buried by the protein-protein interaction. This work is proportional to the aqueous surface-tension increment of the salt and the fractional non-polar surface coverage of the protein. Experimental measurements of osmotic second virial coefficients validate a proposed potential of mean force that ascribes the salt-induced attraction between protein molecules to an enhancement of the hydrophobic attraction. This model provides a first approximation for predicting the protein-protein potential of mean force in concentrated aqueous electrolyte solutions; this potential is useful for determining solution conditions favorable for protein crystallization.  相似文献   

3.
Pressure vs. distance relationships have been obtained for phosphatidylglycerol bilayers, in both charged and uncharged states. Water was removed from the lipid multilayers by the application of osmotic pressures in the range of 0-2.7 x 10(9) dyn/cm2, and the distance between adjacent bilayers was obtained from Fourier analysis of lamellar x-ray diffraction data. For phosphatidylglycerol bilayers made electrically neutral either by lowering the pH or by adding equimolar concentrations of the positively charged lipid stearylamine, the pressure-distance data could be fit with a single exponential. The measured decay lengths were 1.1 A at low pH and 1.5 A with stearylamine, which are similar to decay lengths of the hydration pressure found for gel phases of other neutral bilayers. In addition, the magnitude of this repulsive pressure was proportional to the square of the Volta potential (equivalent to the dipole potential for electrically neutral bilayers) measured in monolayers in equilibrium with bilayers, in agreement with results previously found for the hydration pressure between phosphatidylcholine bilayers. For charged phosphatidylglycerol bilayers, the pressure-distance relation had two distinct regions. For bilayer separations greater than 10 A, the pressure-distance data had an exponential decay length (11 A) and a magnitude consistent with that expected for electrostatic repulsion from double-layer theory. For bilayer separations of 2-10 A, the pressure decayed much more rapidly with increasing bilayer separation (decay length less than 1 A). We interpret these data at low bilayer separations in terms of a combination of hydration repulsion and steric hindrance between the lipid head groups and the sodium ions trapped between apposing bilayers.  相似文献   

4.
The force between two phosphatidylcholine bilayers is measured as a function of their separation, showing a strong hydration repulsion at short range, as previously reported by LeNeveu et al. (LeNeveu, D.M., Rand, R.P., Parsegian, V.A. and Gingell, D. (1977) (Biophys. J. 18, 209–230). The experimental technique also allows direct observation of the molecular process by which two bilayers fuse into one.  相似文献   

5.
About 30% of the phosphatidylglycerol in oleic acid-enriched Acholeplasma laidlawii membranes are not hydrolyzed at temperatures below 10 °C by phospholipase A2 from porcine pancreas. Removal of 53% of the membrane proteins by proteolysis did not reduce the size of this inaccessible phosphatidylglycerol pool. However, modification of the membrane proteins with 2,4,6-trinitrobenzenesulfonic acid or glutaraldehyde did make an additional 70% of this protected pool of phosphatidylglycerol accessible to phospholipase A2. Complete hydrolysis of phosphatidylglycerol at low incubation temperatures was achieved only after heat treatment of the membranes which resulted in an extensive aggregation of intrinsic membrane proteins as visualized by freeze-etch electron microscopy. Phospholipase A2 from bee venom was more effective in hydrolyzing phosphatidylglycerol at low temperature than the pancreatic enzyme. These results show that the inaccessibility of phosphatidylglycerol is not due to resealing of isolated membranes, the presence of a crystalline phase in the membrane lipids, or a shielding effect of surface proteins. The protection against hydrolysis may be due to an interaction of phosphatidylglycerol with intrinsic membrane proteins which is stabilized at low temperatures. Increasing the temperature favors the exchange of protein-bound phosphatidylglycerol with other membrane lipids resulting in complete hydrolysis.  相似文献   

6.
7.
Transport properties of concentrated electrolytes have been analysed using classical molecular dynamics simulations with the algorithms and parameters typical of simulations describing complex electrokinetic phenomena. The electrical conductivity and transport numbers of electrolytes containing monovalent (KCl), divalent (MgCl2), a mixture of both (KCl+MgCl2) and trivalent (LaCl3) cations have been obtained from simulations of the electrolytes in electric fields of different magnitude. The results obtained for different simulation parameters have been discussed and compared with experimental measurements of our own and from the literature. The electroosmotic flow of water molecules induced by the ionic current in different cases has been calculated and interpreted with the help of the hydration properties extracted from the simulations.  相似文献   

8.
Biological membranes define not only the cell boundaries but any compartment within the cell. To some extent, the functionality of membranes is related to the elastic properties of the lipid bilayer and the mechanical and hydrophobic matching with functional membrane proteins. Supported lipid bilayers (SLBs) are valid biomimetic systems for the study of membrane biophysical properties. Here, we acquired high-resolution topographic and quantitative mechanics data of phase-separated SLBs using a recent atomic force microscopy (AFM) imaging mode based on force measurements. This technique allows us to quantitatively map at high resolution the mechanical differences of lipid phases at different loading forces. We have applied this approach to evaluate the contribution of the underlying hard support in the determination of the elastic properties of SLBs and to determine the adequate indentation range for obtaining reliable elastic moduli values. At ~200 pN, elastic forces dominated the force-indentation response and the sample deformation was <20% of the bilayer thickness, at which the contribution of the support was found to be negligible. The obtained Young's modulus (E) of 19.3 MPa and 28.1 MPa allowed us to estimate the area stretch modulus (k(A)) as 106 pN/nm and 199 pN/nm and the bending stiffness (k(c)) as 18 k(B)T and 57 k(B)T for the liquid and gel phases, respectively.  相似文献   

9.
Liu F  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2004,43(12):3679-3687
High-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy were used to study the interaction of a cationic alpha-helical transmembrane peptide, acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)), and members of the homologous series of anionic n-saturated diacyl phosphatidylglycerols (PGs). Analogues of L(24), in which the lysine residues were replaced by 2,3-diaminopropionic acid (L(24)DAP), or in which a leucine residue at each end of the polyleucine sequence was replaced by a tryptophan (WL(22)W), were also studied to investigate the roles of lysine side-chain snorkeling and aromatic side-chain interactions with the interfacial region of phospholipid bilayers. The gel/liquid-crystalline phase transition temperature of the host PG bilayers is altered by these peptides in a hydrophobic mismatch-dependent manner, as previously found with zwitterionic phosphatidylcholine (PC) bilayers. However, all three peptides reduce the phase transition temperature and enthalpy to a greater extent in anionic PG bilayers than in zwitterionic PC bilayers, with WL(22)W having the largest effect. All three peptides form very stable alpha-helices in PG bilayers, but small conformational changes are induced in response to a mismatch between peptide hydrophobic length and gel-state lipid bilayer hydrophobic thickness. Moreover, electrostatic and hydrogen-bonding interactions occur between the terminal lysine residues of L(24) and L(24)DAP and the polar headgroups of PG bilayers. However, such interactions were not observed in PG/WL(22)W bilayers, suggesting that the cation-pi interactions between the tryptophan and lysine residues predominate. These results indicate that the lipid-peptide interactions are affected not only by the hydrophobic mismatch between these peptides and the host lipid bilayer, but also by the tryptophan-modulated electrostatic and hydrogen-bonding interactions between the positively charged lysine residues at the termini of these peptides and the negatively charged polar headgroups of the PG bilayers.  相似文献   

10.
11.
Polarographic measurement of H2 in aqueous solutions   总被引:5,自引:0,他引:5  
An inexpensive circuit designed for polarographic measurement of dissolved H2 over a wide concentration range is described. Examples of its application to measurements of hydrogenase and nitrogenase activities are presented.  相似文献   

12.
X-ray diffraction studies have been performed, as a function of water content, on dipalmitoyl phosphatidyl-glycerol bilayers, both in the charged state at pH 8.0 and in the protonated state at pH 1.5, using buffers of 1.5 M salt concentration. Measurements were made at 20°C, and the high-angle reflections indicated that the bilayers were in the ordered phase at both pH values. Lamellar diffractions were observed under all conditions studied. The lamellar repeat reached a limiting value of 62.4 Å (6.24 nm) at a water/lipid ratio of 0.24 at pH 8.0, and a limiting value of 67.3 Å (6.73 nm) at a water/lipid ratio of 0.22 at pH 1.5. The area per lipid molecule in the plane of the bilayer, deduced from the bilayer thickness and the lipid partial specific volume, is 48 Å2 (0.48 nm2) at pH 8.0 and 37 Å2 (0.37 nm2) at pH 1.5. The area per molecule in the plane perpendicular to the chain axes, deduced from the X-ray short spacings, is 40.5 Å2 (0.405 nm2) at pH 8.0 and 39.2 Å2 (0.392 nm2) at pH 1.5. Thus the lipid molecules are tilted by approx. 30° relative to the bilayer normal at pH 8.0, but are not essentially untilted at pH 1.5.  相似文献   

13.
Due to their hydrophobic nature, lipophilic compounds are always bound to proteins when transported in the organism. The transfer of such compounds between their binding proteins and cells as well as intracellular trafficking is mediated by a very low water-phase concentration of monomers. The use of protein filled resealed red cell membranes (erythrocyte ghosts) as semipermeable bags enables us to determine directly such water-phase concentrations in a biological system where the lipophilic compound is in equilibrium with the compound bound to its binding protein. Equilibrium dissociation constants (Kd’s) and number of binding sites are determined by regression analyses of data. We describe the method with the hydrophobic anion arachidonate and the neutral N-arachidonoylethanolamide as examples. Published: October 19, 2004.  相似文献   

14.
B Wolf  S Hanlon 《Biochemistry》1975,14(8):1661-1670
The data and approach reported in paper I (Hanlon et al., 1975, preceding paper) have been used to calculate the fractional changes in secondary structure of calf thymus deoxyribonucleic acid which occur in aqueous solutions as a function of the concentration of NaCl, KCl, LiCl, CsCl, and NH4Cl. There is a continuous loss in the "B" character of the nucleic acid with concomitant production of the C and, in some instances, an A form, as well, as the salt concentration increases. Sedimentation velocity studies suggest that there is an accompanying change in the hydrodynamic characteristics of the DNA molecules, as well. Utilizing the existing hydration data in the literature (Hearst and Vinograd, 1961a,b; Hearst, 1965; Tunis and Hearst, 1968a; Cohen and Eisenberg, 1968; Falk et al., 1962, 1963a,b), we have found that a gradual loss of "B" character and a decrease in the frictional coefficient of DNA occur as the net hydration of DNA is reduced from the fully hydrated from (60-80 mol of H2O/mol of nucleotide) to values of ca. 12-14 mol of H2O/mol of nucleotide. Below that value, a more precipitous decrease in these properties occurs. Extrapolation of the linear relationship observed between the fractional B content and the net hydration in the latter regions yield values of ca. 18 mol of H2O/mol of nucleotide at 100% B and ca. 4 mol of H2O/mol of nucleotide at 0% B (i.e., 100% C or C + A) for the alkali metal salts of DNA. The ammonium salt retains somewhat more H2O in the C and A forms (ca. 7). These results together with the hydration site assignments of Falk et al. (1962, 1963a,b) are interpreted in terms of a hydration model for DNA in aqueous solution in which an intact primary hydration shell of ca. 18 mol of H2O/mol of nucleotide is required for the maintenance of the "B" conformation. Removal of all but those water molecules solvating the phosphate groups results in the conversion to the C forms, predominantly, with a small amount of A structure formed as well in some salts. The accompanying changes in the sedimentation coefficients suggest that the DNA molecule assumes a more compact and/or flexible form under these conditions in which it is mainly in the C and A structures. The combination of these two events which ensue upon dehydration create a polymeric structure which can be more easily packaged in biological systems.  相似文献   

15.
Melittin is shown to affect the structure of the charged phospholipid dipalmitoylphosphatidylglycerol (DPPG). In the gel phase, the presence of melittin leads to (i) an increased lipid interchain vibrational coupling, (ii) a shift of the rectangular to hexagonal lipid packing transition toward low temperatures, (iii) a very small conformational disordering effect, (iv) a decrease of the polarity or hydrogen bonding capability of the lipid ester group surrounding, (v) an important decrease of the water content in the complexes where the remaining water has a more disordered structure than bulk water, and (vi) an interlamellar repeat distance of 79 A. All these observations are rationalized by the following model: adjacent bilayers of DPPG are bridged by tetramers of melittin through electrostatic interactions inducing surface charge neutralization and partial dehydration of the complexes. Melittin also affects the thermotropic behavior of DPPG. When a small amount of the toxin is present, its affinity for charged lipids is such that a phase separation occurs, the domains being stable enough to have their own gel to liquid-crystalline phase transition. In the fluid state, a deeper penetration into the lipid matrix is proposed based on the downshift of the phase transition and the low vibrational interchain coupling. This study brings out general features of cationic species/anionic lipid complexes. The charge neutralization leads to stronger interchain coupling, and electrostatic bridging of adjacent bilayers seems to be common. The hydrophobicity of the peptide is a key factor in the modulation of the gel to liquid-crystalline phase transition and in its insertion in the fluid lipid matrix.  相似文献   

16.
The specific interaction between human Toll-like receptor 9 (TLR9)-ectodomain (ECD)-fusion protein and immunostimulatory CpG-DNA was measured using force spectroscopy. Flexible tethers were used between receptors and surface as well as between DNA and atomic force microscope tip to make efficient recognition studies possible. The molecular recognition forces detected are in the range of 50 to 150 ± 20 pN at the used force-loading rates, and the molecular interaction probability was much reduced when the receptors were blocked with free CpG-DNA. A linear increase of the unbinding force with the logarithm of the loading rate was found over the range 0.1 to 30 nN/s. This indicates a single potential barrier characterizing the energy landscape and no intermediate state for the unbinding pathway of CpG-DNA from the TLR9-ECD. Two important kinetic parameters for CpG-DNA interaction with TLR9-ECD were determined from the force-loading rate dependency: an off-rate of k(off) = 0.14 ± 0.10 s(-1) and a binding interaction length of x(β) = 0.30 ± 0.03 nm, which are consistent with literature values. Various models for the molecular interaction of this innate immune receptor binding to CpG-DNA are discussed.  相似文献   

17.
The solubilities at 298.2 K of dl-aminobutyric acid in aqueous solutions of NaCl, KCl, NaNO(3) and KNO(3) were measured. The solubility of DL-aminobutyric acid was found to be influenced by the concentration and by the nature of both the cation and the anion of the electrolyte. Comparison of the results obtained in this study and those for other amino acids reported in the literature, indicates that the structure of the hydrocarbon backbone of an amino acid plays an important role in the interactions of an amino acid with an electrolyte. A thermodynamic model has been used to correlate the solubilities of DL-aminobutyric acid in aqueous electrolyte solutions. The activity coefficients of the amino acid in the electrolyte solutions, were represented by a model proposed by Khoshkbarchi and Vera [M.K. Khoshkbarchi, J.H. Vera, AIChE J. 42 (1996) 2354; M.K. Khoshkbarchi, J.H. Vera, Ind. Eng. Chem. Res. 35 (1996) 4755]. This model, which considers a combination of both long- and short-range interactions, contains only two adjustable parameters. All other parameters are available in the literature. The model can accurately correlate the solubility of dl-aminobutyric acid in aqueous solutions of electrolytes.  相似文献   

18.
S Hanlon  S Brudno  T T Wu  B Wolf 《Biochemistry》1975,14(8):1648-1660
The circular dichroism properties of calf thymus DNA have been examined at 27 degrees over the wavelength range of 215-300 nm in aqueous solutions of NaCl, KCl, LiCl, CsCl, and NH4Cl at pH 7. The concentrations of these electrolytes were varied from 0.01 to ca. 5-10 m. The spectral changes induced by changes in concentration of NaCl and KCl and all but the highest concentrations of NH4Cl as well as lower concentrations of Cstcl and LiCl could be represented by a common two-state transition involving the conversion of the typical conservative spectrum commonly seen in dilute solutions of these salts to a nonconservative spectrum similar to that obtained by Tunis-Schneider and Maestre ((1970), J. Mol. Biol. 52, 521) for the C form of DNA. At higher concentrations of CsCl, LiCl, and NH4Cl, an additional component, resembling an A type spectrum, was required to account for the observed CD changes with changing concentration of electrolyte. Relying on the published spectra of the B, the C, and the A forms of DNA by Tunis-Schneider and Maestre for identification and approximate values of the molecular ellipticities of these forms, we have analyzed these spectral transitions by two least mean squares methods in order to obtain accurate reference spectra of aqueous "B", C, and "A" conformations of calf thymus DNA. The results obtained suggest that although the C form in solution is identical with that obtained in film, the aqueous B conformational limit is not identical with the crystallographic Watson-Crick structure. In addition, the A form generated in solution under our experimental conditions appears to be more similar to that assumed by low molecular weight Escherichia coli DNA at 75% relative humidity rather than calf thymus DNA at the same relative humidity.  相似文献   

19.
The use of liposomes as drug delivery systems has been limited by their rapid clearance from circulation by the mononuclear phagocyte system. Recent studies have found that circulation times can be greatly enhanced by incorporating a small amount of modified lipids whose headgroups are derivatized with a bulky water soluble polymeric chain of poly ethylene oxide. We report here a systematic study using the Surface Forces Apparatus to measure directly the interactions between two phosphatidyl ethanolamine lipid bilayers, exposing this polymeric headgroup at different concentrations in the bilayer. We found that the force becomes repulsive at all separations and that the thickness of the steric barrier could be controlled easily by adjusting the concentration of the modified lipids. Equilibrium force profiles were measured that were reversible and largely insensitive to changes in electrolyte concentration and temperature. The results have enabled the Dolan and Edwards theory for the steric forces of low coverage polymer surfaces and the Alexander de Gennes theory for high coverage surfaces to be tested, and both were found to apply. We conclude that these simple theories can be used to model the interactions of surprisingly short segments and, hence, apply to such systems as lipids with bulky headgroups and liposomes containing a sterically stabilizing polymer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号