首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Techniques such as NMR, ESR, fluorescence depolarization, and neutron scattering are commonly used to investigate the physical properties of membranes. Oriented membrane bilayer systems (single crystals) are often employed in these investigations. It is important to know and be able to control the level of hydration in these samples. In particular, one must have confidence that a sample is in fact “fully hydrated” and remains so during the course of the experiment. Full hydration is difficult to obtain by hydrating oriented samples using water-saturated vapor. An alternative method for hydrating oriented samples is to surround the oriented sample by a polymer solution. Higher hydration levels are achieved using this method. Three nuclear magnetic resonance studies using headgroup deuterated 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) were done to compare the hydration level of oriented headgroup samples surrounded by a polymer/water solution and fully hydrated multibilayer dispersions. Transition temperatures, quadrupolar splittings (at 50°C) and spin-lattice relaxation times (at 50°C) were measured. The simple tests of the transition temperature and quadrupolar splitting to determine full hydration, as my results show, are not sufficient. In this paper I demonstrate that more fully hydrated samples can easily be achieved by surrounding the oriented sample with a 5 wt% polyethylene glycol/water solution than by hydrating in water saturated vapor.  相似文献   

2.
Whether hydrated from vapor or immersed in liquid water, aligned multibilayers of dimyristoylphosphatidylcholine adsorbed to a single mica "substrate" are shown by neutron diffraction to hydrate in all mesophases (e.g., Lbeta', Pbeta', and Lalpha) to the same extent as their liposomal counterparts suspended in liquid water. These data clearly demonstrate that the commonly accepted vapor pressure paradox does not exist.  相似文献   

3.
The interaction of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) with erythrocyte membranes from patients with Huntington disease and normal controls has been studied by electron spin resonance. GABA affects the physical state of erythrocyte membrane proteins in control and Huntington disease differently. In addition, after exposure of spin-labeled Huntington disease erythrocyte membranes to 0.1 mM GABA, the relevant electron spin resonance parameters reflecting the physical state of membrane proteins are indistinguishable from those of untreated control membranes. These findings support the concept that this disease is associated with a generalized membrane defect.  相似文献   

4.
This study reports the solid-state NMR spectroscopic characterization of a long chain phospholipid bilayer system which spontaneously aligns in a static magnetic field. Magnetically aligned phospholipid bilayers or bicelles are model systems which mimic biological membranes for magnetic resonance studies. The oriented membrane system is composed of a mixture of the bilayer forming phospholipid palmitoylstearoylphosphatidylcholine (PSPC) and the short chain phospholipid dihexanoylphosphatidylcholine (DHPC) that breaks up the extended bilayers into bilayered micelles or bicelles that are highly hydrated (approx. 75% aqueous). Traditionally, the shorter 14 carbon chain phospholipid dimyristoylphosphatidylcholine (DMPC) has been utilized as the bilayer forming phospholipid in bicelle studies. Alignment (perpendicular) was observed with a PSPC/DHPC q ratio between 1.6 and 2.0 slightly above T(m) at 50 degrees C with (2)H and (31)P NMR spectroscopy. Paramagnetic lanthanide ions (Yb(3+)) were added to flip the bilayer discs such that the bilayer normal was parallel with the static magnetic field. The approx. 1.8 (PSPC/DHPC) molar ratio yields a thicker membrane due to the differences in the chain lengths of the DMPC and PSPC phospholipids. The phosphate-to-phosphate thickness of magnetically aligned PSPC/DHPC phospholipid bilayers in the L(alpha) phase may enhance the activity and/or incorporation of different types of integral membrane proteins for solid-state NMR spectroscopic studies.  相似文献   

5.
Solid-state nmr spectroscopy provides a robust method for investigating polypeptides that have been prepared by chemical synthesis and that are immobilized by strong interactions with solid surfaces or large macroscopic complexes. Solid-state nmr spectroscopy has been widely used to investigate membrane polypeptides or peptide aggregates such as amyloid fibrils. Whereas magic angle spinning solid-state nmr spectroscopy allows one to measure distances and dihedral angles with high accuracy, static membrane samples that are aligned with respect to the magnetic field direction allow one to determine the secondary structure of bound polypeptides and their orientation with respect to the bilayer normal. Peptide dynamics and the effect of polypeptides on the macroscopic phase preference of phospholipid membranes have been investigated in nonoriented samples. Investigations of the structure and topology of membrane channels, peptide antibiotics, signal sequences as well as model systems that allow one to dissect the interaction contributions in phospholipid membranes will be presented in greater detail.  相似文献   

6.
Artificial membranes may be resistant or susceptible to catalytic attack by secretory phospholipase A(2) (sPLA(2)) depending on the physical properties of the membrane. Living cells are normally resistant but become susceptible during trauma, apoptosis, and/or a significant elevation of intracellular calcium. Intact erythrocytes and ghosts were studied to determine whether the principles learned from artificial systems apply to biological membranes. Membrane properties such as phospholipid and/or protein composition, morphology, and microscopic characteristics (e.g. fluidity) were manipulated by preparing ghosts under different experimental conditions such as in the presence or absence of divalent cations with or without ATP. The properties of each membrane preparation were assessed by biochemical and physical means (fluorescence spectroscopy and electron and two-photon microscopy using the membrane probes bis-pyrene and laurdan) and compared with sPLA(2) activity. The properties that appeared most relevant were the degree of phosphatidylserine exposure on the outer face of the membrane and changes to the membrane physical state detected by bis-pyrene and laurdan. Specifically, vulnerability to hydrolysis by sPLA(2) was associated with an increase in bilayer order apparently reflective of expansion of membrane regions of diminished fluidity. These results argue that the general principles identified from studies with artificial membranes apply to biological systems.  相似文献   

7.
Summary The electroosmotic flows of solution produced by the chloride salts of H, Na, K, tetramethylammonium (TMA) and tetraethylammonium (TEA) through three membranes of net negative charge and high water content (40 to 60%) have been obtained. The amount of solution transported, (EO s), increased in the order: HCl, KCl, NaCl, TMACl and TEACl in a membrane of 43% hydration. In membranes 60% hydrated the order became HCl, KCl, NaCl, TEACl and TMACl. (EO s) for a salt increased as membrane hydration became larger. The permselectivity of the three membranes for cations declined in the order: HCl, KCl=NaCl, TMACl and TEACl. Cation permselectivity also declined with increases in membrane hydration. The (EO s) is a net solution flow and is the difference between the cation-induced water flow and the chloride-induced water flow in the opposite direction. In membranes of moderate to high H2O content, co-ion transport is significant and the water-flow associated with co-ion movement must be determined if the contribution of the counter-ion ([EO]cation) to the (EO s) is to be found. Cl-ion induced water flow was determined by assuming an identity of K and Cl ions. [EO]cation increased as the hydrated radii of the cations increased and for any particular cation [EO]cation was at least 100% greater in the 60% hydrated membrane than in the 43% hydrated membrane. The current-induced water flow was found to be composed of both an electroosmotic and an osmotic component. The latter represented between 10 and 40% of the total water flow.Presented in part before the American Physiological Society at the 54th meeting of the F.A.S.E.B., Atlantic City, N.J., April, 1970.  相似文献   

8.
Several groups have introduced chlorophyll a into artificial bilayer membranes in an attempt to develop a model system for studying the behavior of chlorophyll in the photosynthetic membrane. In order to investigate the organization of chlorophyll in these model systems, mixed bilayer systems containing chlorophyll a and distearoylphosphatidylcholine under conditions of excess water have been studied by differential thermal analysis. The resulting data suggest a phase diagram for this system consisting of a double eutectic with formation of a thermodynamic compound of defined stoichiometry between chlorophyll a and phospholipid at temperatures below the liquidus. The phase diagram may be simulated to obtain thermodynamic parameters characteristic of the compound phase. It is apparent that the organization and intermolecular interactions of chlorophyll in a bilayer membrane can very widely depending on the temperature and composition of the system. In particular, phase separation can occur within the membrane over certain temperature ranges, resulting in an inhomogeneous system. Thus in interpreting the physical and spectroscopic properties of chlorophyll a in bilayer membranes, it is essential to consider the phase state of the membrane and the organization and environment of the chlorophyll in the particular phase.  相似文献   

9.
From the chain of events leading to secretion we have identified and isolated stages in which mechanical and physical mechanics may play important roles. These include the vesicle motion towards the cell wall, drainage of the cytoplasmic fluid from the gap between the membranes, reorganization of the membrane constituents, failure of the membrane structure and coalescence into a new configuration. We suggest a unified mechanism, relevant to the neural, secretory and vascular systems, based on physical factors as flow, pressure and stress distributions, and membranes properties. The simulation of several stages of secretion is coupled with experimental observations. By use of the proposed hypothesis it is possible to explain some observed phenomena, such as spontaneous and induced secretion, membrane failure, protein lateral dislocation and the omega-shapes in electron microscopic exposures of fusion sites.  相似文献   

10.
The polar interface of membranes containing phosphatidylglycerol or cholesterol was studied by (2)H nuclear magnetic resonance (NMR) as a function of membrane hydration. The membranes were macroscopically aligned and hydrated with deuterium oxide. Water uptake and membrane annealing was achieved under NMR control, using a novel hydration technique. Well-resolved (2)H quadrupolar doublets were obtained from individual hydroxyl residues and from the interlamellar water. The response of the phosphatidylglycerol headgroup and of the cholesterol molecule to the spontaneous evaporation of interlamellar water could be thus monitored continuously. It is shown that the phosphatidylglycerol headgroup undergoes changes of conformation and average orientation with respect to the membrane surface and that the off-axis motion of the cholesterol molecule decreases. The deuteron exchange between hydroxyl residues and surface-associated D(2)O was determined by an inversion transfer technique. The exchange rates of the hydroxyl residues in the phosphatidylglycerol headgroup were different and depended strongly on the total hydration of the membrane. Significantly lower and almost hydration-independent rates were obtained for cholesterol. These results will be discussed with reference to earlier reports on the headgroup dynamics of phosphatidylglycerol and on the interaction of cholesterol with the membrane-water interface.  相似文献   

11.
M Ge  D E Budil    J H Freed 《Biophysical journal》1994,67(6):2326-2344
Electron spin resonance (ESR) studies have been performed on spin-labeled model membranes aligned using the isopotential spin-dry ultracentrifugation (ISDU) method of Clark and Rothschild. This method relies on sedimentation of the membrane fragments onto a gravitational isopotential surface with simultaneous evaporation of the solvent in a vacuum ultracentrifuge to promote alignment. The degree of alignment obtainable using ISDU, as monitored by ESR measurements of molecular ordering for both lipid (16-PC) and cholestane spin labels (CSL), in dipalmitoylphosphatidylcholine (DPPC) model membranes compares favorably with that obtainable by pressure-annealing. The much gentler conditions under which membranes may be aligned by ISDU greatly extends the range of macroscopically aligned membrane samples that may be investigated by ESR. We report the first ESR study of an integral membrane protein, bacteriorhodopsin (BR) in well-aligned multilayers. We have also examined ISDU-aligned DPPC multilayers incorporating a short peptide gramicidin A' (GA), with higher water content than previously studied. 0.24 mol% BR/DPPC membranes with CSL probe show two distinct components, primarily in the gel phase, which can be attributed to bulk and boundary regions of the bilayer. The boundary regions show sharply decreased molecular ordering and spectral effects comparable to those observed from 2 mol% GA/DPPC membranes. The boundary regions for both BR and GA also exhibit increased fluidity as monitored by the rotational diffusion rates. The high water content of the GA/DPPC membranes reduces the disordering effect as evidenced by the reduced populations of the disordered components. The ESR spectra obtained slightly below the main phase transition of DPPC from both the peptide- and protein-containing membranes reveals a new component with increased ordering of the lipids associated with the peptide or protein. This increase coincides with a broad endothermic peak in the DSC, suggesting a disaggregation of both the peptide and the protein before the main phase transition of the lipid. Detailed simulations of the multicomponent ESR spectra have been performed by the latest nonlinear least-squares methods, which have helped to clarify the spectral interpretations. It is found that the simulations of ESR spectra from CSL in the gel phase for all the lipid membranes studied could be significantly improved by utilizing a model with CSL molecules existing as both hydrogen-bonded to the bilayer interface and non-hydrogen-bonded within the bilayer.  相似文献   

12.
Magnetically aligned bicelles are an excellent medium for structure determination of isotopically labeled membrane proteins by solid-state NMR spectroscopy. Bicelles are a mixture of long- and short-chain phospholipids that form bilayers in an aqueous medium and align spontaneously in a high magnetic field, for example that of an NMR spectrometer with a 1H resonance frequency between 400 and 900 MHz. Importantly, membrane proteins have been shown to be fully functional in these fully hydrated, planar bilayers under physiological conditions of pH and temperature. We describe a protocol for preparing stable protein-containing bicelles samples that yield high-resolution solid-state NMR spectra. Depending on the details of the protein and its behavior in the lipids, the time for sample preparation can vary from a few hours to several days.  相似文献   

13.
Ceramide: From lateral segregation to mechanical stress   总被引:1,自引:0,他引:1  
Ceramide is a sphingolipid present in eukaryotic cells that laterally segregates into solid domains in model lipid membranes. Imaging has provided a wealth of structural information useful to understand some of the physical properties of these domains. In biological membranes, ceramide is formed on one of the membrane leaflets by enzymatic cleavage of sphyngomyelin. Ceramide, with a smaller head size than its parent compound sphyngomyelin, induces an asymmetric membrane tension and segregates into highly ordered domains that have a much high shear viscosity than that of the surrounding lipids. These physical properties, together with the rapid transmembrane flip-flop of the locally produced ceramide, trigger a sequence of membrane perturbations that could explain the molecular mechanism by which ceramide mediates different cell responses. In this review we will try to establish a connection between the physical membrane transformations in model systems known to occur upon ceramide formation and some physiologically relevant process in which ceramide is known to participate.  相似文献   

14.
A systematic study is presented of the effects of trehalose on the physical properties of extruded DPPC–cholesterol unilamellar vesicles. Particular emphasis is placed on examining how the interactions present in the hydrated state translate into those in the dehydrated state. Observations from HSDSC and DSC are used to examine the phase behavior of hydrated and dehydrated vesicles, respectively. The concentration of trehalose inside and outside the vesicles is manipulated, and is shown to affect the relative stability of the membranes. Our results show for the first time that a combination of high inner and low outer trehalose concentration is able to decrease the gel-to-liquid crystalline phase temperature (Tm), while any other combination will not. Upon dehydration, the Tm of all lipid mixtures increases. The extent of the increase depends on the trehalose distribution across the bilayer. The Tm changes in the same direction with trehalose concentration for both freeze-dried and fully hydrated samples, suggesting that the trehalose distribution across the vesicle membrane, as well as the trehalose–phospholipid interaction, is maintained upon lyophilization. The results presented in this work may aid in the formulation of systems to be used in the lyophilization of liposomes for drug delivery applications.  相似文献   

15.
In this paper, hydrophilic polymer membranes based on macromolecular chitosan networks have been synthesized and characterized. The structure of the membrane has been altered in several ways during the formation to adjust the properties, particularly with regard to the elasticity, tensile strength, permeability, and surface structure. An alteration of the network structure was achieved by addition of flexibilizer, cross-linking with dialdehydes, symplex formation of the chitosan with the polyanion sulfoethyl cellulose, and the introduction of artificial pores on the micro- and nanometer scale into the chitosan matrix with silica particles or poly(ethylene glycol). The resulting network structures and morphologies of these unique membranes that combine the novel alteration techniques have been characterized in detail and correlated with molecular parameters of the chitosan as degree of deacetylation, molar mass, and charge density. Finally, we report on the impact of the new network structures on physical properties of the membranes, the water vapor and gas permeability and the tensile strength, to evaluate possible application of the membranes as a wet wound dressing material with microbial barrier function that actively assists the healing process of problematic wounds. Parts of the novel combined membrane alteration and formation techniques are now covered by the patent DE 102004047115.  相似文献   

16.
Several lipid-water mixtures form phases that give rise to freeze-fracture replicas exhibiting three-dimensional regular arrays of closely packed globular elements, often called "lipidic particles". These phases have often been poorly classified with respect to long-range organization and symmetry and have in most cases been asserted to be built up by closed lipid aggregates, such as reversed micelles. However, studies of phases giving rise to the above-mentioned freeze-fracture replicas, with X-ray diffraction and the nuclear magnetic resonance pulsed field gradient diffusion technique, have revealed that they are cubic liquid-crystalline phases and with one exception bicontinuous phases, i.e., cubic phases in which both the hydrocarbon and the water regions are continuous. Up to now the only known exception is a cubic phase composed of closed rod-shaped micelles of the normal type. Thus it is not possible to decide from a freeze-fracture image of a cubic phase, showing three-dimensional arrays of "lipidic particles", if the phase is bicontinuous or composed of closed lipid aggregates. Hitherto, it has not been shown that a biological membrane lipid-water system is able to form a cubic liquid-crystalline phase consisting of reversed micelles. The existence of such a phase is also improbable considering the location in the phase diagrams of cubic phases formed by biological membrane lipid-water systems.  相似文献   

17.
To gain a better understanding of the biological role of polyunsaturated phospholipids, infrared (IR) linear dichroism, NMR, and x-ray diffraction studies have been conducted on the lyotropic phase behavior and bilayer dimensions of sn-1 chain perdeuterated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC-d35), a mixed-chain saturated (18:0)-polyunsaturated (22:6 omega 3) lipid. SDPC films were hydrated at definite values of temperature (T) and relative humidity (RH). In excess water, the lipid forms exclusively lamellar phases in the temperature range 0--50 degrees C. Upon dehydration the lipid undergoes the main phase transition between the liquid-crystalline (L(alpha)) and gel (L(beta)) phase at T < 15 degrees C. Both the saturated and polyunsaturated chains adopt a stretched conformation in the L(beta) phase, presumably the all-trans (stearoyl) and angle iron or helical (docosahexaenoyl) one. A new fluid lamellar phase (L(alpha)') was found in partially hydrated samples at T > 15 degrees C. SDPC membranes expand laterally and contract vertically in the L(alpha)' phase when water was removed. This tendency is in sharp contrast to typical dehydration-induced changes of membrane dimensions. The slope of the phase transition lines in the RH-T phase diagram reveal that the lyotropic L(alpha)'-L(alpha) and L(beta)-L(alpha) transitions are driven by enthalpy and entropy, respectively The possible molecular origin of the phase transitions is discussed. The properties of SDPC are compared with that of membranes of monounsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC-d31).  相似文献   

18.
Water binding capability and phase structures for different lipid species extracted from Acholeplasma laidlawii A membranes have been studied using deuteron nuclear magnetic resonance and low-angle X-ray diffraction.The dominating membrane lipids are monoglucosyldiglyceride and diglucosyldiglyceride and each of them takes up limited amounts of water (bound plus trapped), i.e., up to 13% (w/w), whereas the phospholipids and phosphoglycolipids have larger hydration capacities.Addition of magnesium and calcium ions, but not sodium ions, to the diglucosyldiglyceride increases the hydration capability. This increase is accompanied by the formation of a metastable liquid crystalline phase and a hysteresis effect for the transition temperature.Large differences in water deuteron quadrupole splitting were observed between mono- and diglucosyldiglyceride. Both 2H nuclear magnetic resonance and low-angle X-ray diffraction studies on lipids containing biosynthetically incorporated ω-d3-palmitic acid clearly indicate the existence of a reverse hexagonal phase structure for the monoglucosyldiglyceride and lamellar structures for the diglucosyldiglyceride and the other membrane lipids.The low hydration capability of the large diglucosyldiglyceride polar head is discussed in terms of polar head configuration.Both mono- and diglucosyldiglyceride have several physical properties similar to those of phosphatidylethanolamine.  相似文献   

19.
The first two-dimensional Fourier-transform electron spin resonance (2D-FT-ESR) studies of nitroxide-labeled lipids in membrane vesicles are reported. The considerable enhancement this experiment provides for extracting rotational and translational diffusion rates, as well as orientational ordering parameters by means of ESR spectroscopy, is demonstrated. The 2D spectral analysis is achieved using theoretical simulations that are fit to experiments by an efficient and automated nonlinear least squares approach. These methods are applied to dispersions of 1-palmitoyl-2oleoyl-sn-glycerophosphatidylcholine (POPC) model membranes utilizing spin labels 1-palmitoyl-2-(16-doxyl stearoyl) phosphatidylcholine and the 3-doxyl derivative of cholestan-3-one (CSL). Generally favorable agreement is obtained between the results obtained by 2D-FT-ESR on vesicles with the previous results on similar systems studied by continuous wave (cw) ESR on aligned samples. The precision in determining the dynamic and ordering parameters is significantly better for 2D-FT-ESR, even though the cw ESR spectra from membrane vesicles are resolved more poorly than those from well aligned samples. Some small differences in results by the two methods are discussed in terms of limitations of the methods and/or theoretical models, as well as possible differences between dynamic molecular structure in vesicles versus aligned membranes. An interesting observation with CSL/POPC, that the apparent homogeneous linewidths seem to increase in "real time," is tentatively attributed to the effects of slow director fluctuations in the membrane vesicles.  相似文献   

20.
General anesthetics have been shown to perturb the membrane properties of excitable tissues. Due to their lipid solubility, anesthetics dissolve in every membrane, penetrate into organelles and interact with numerous cellular structures in multiple ways. Several studies indicate that anesthetics alter membrane fluidity and decrease the phase-transition temperature. However, the required concentrations to induce such effects on the properties of membrane lipids are by far higher than clinically relevant concentrations. In the present study, the fluidizing effect of the anesthetic agent propofol (2,6-diisopropyl phenol: PPF), a general anesthetic extensively used in clinical practice, has been investigated on liposome dimyristoyl-L-alpha phosphatidylcholine (DMPC) and cell (erythrocyte, Neuro-2a) membranes using electron spin resonance spectroscopy (ESR) of nitroxide labeled fatty acid probes (5-, 16-doxyl stearic acid). A clear effect of PPF at concentrations higher than the clinically relevant ones was quantified both in liposome and cell membranes, while no evident fluidity effect was measured at the clinical PPF doses. However, absorption spectroscopy of merocyanine 540 (MC540) clearly indicates a PPF fluidizing capacity in liposome membrane even at these clinical concentrations. PPF may locally influence the structure and dynamics of membrane domains, through the formation of small-scale lipid domains, which would explain the lack of ESR information at low PPF concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号