首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Isolated flagellar filaments of Sulfolobus shibatae were 15 nm in diameter, and they were composed of two major flagellins which have M(r)s of 31,000 and 33,000 and which stained positively for glycoprotein. The flagellar filaments of Thermoplasma volcanium were 12 nm in diameter and were composed of one major flagellin which has an M(r) of 41,000 and which also stained positively for glycoprotein. N-terminal amino acid sequencing indicated that 18 of the N-terminal 20 amino acid positions of the 41-kDa flagellin of T. volcanium were identical to those of the Methanococcus voltae 31-kDa flagellin. Both flagellins of S. shibatae had identical amino acid sequences for at least 23 of the N-terminal positions. This sequence was least similar to any of the available archaeal flagellin sequences, consistent with the phylogenetic distance of S. shibatae from the other archaea studied.  相似文献   

2.
The flagellins of Methanococcus voltae are encoded by a multigene family of four related genes (flaA, flaB1, flaB2, and flaB3). All four genes map within the same region of the genome, with the last three arranged in a direct tandem. Northern (RNA) blot and primer extension analyses of total cellular RNA indicate that all four genes are transcribed. The flaB1, flaB2, and flaB3 flagellins are transcribed as part of a large polycistronic message which encodes at least one more protein which is not a flagellin. An intercistronic stem-loop followed by a poly(T) tract located between the flaB2 and flaB3 genes appears to increase the resistance of the flaB1/flaB2 portion of this polycistronic message to digestion by endogenous RNases. The flaA gene, located approximately 600 bp upstream from the tandem, is transcribed as a separate message at very low levels. The four open reading frames encode proteins of molecular weights 23,900, 22,400, 22,800, and 25,500, much less than the Mr values of 33,000 and 31,000 for the flagellins calculated from sodium dodecyl sulfate-polyacrylamide gel electrophoresis of isolated flagellar filaments. Each flagellin contains multiple eukaryotic glycosylation signals (Arg-X-Ser/Thr), although they do not appear to be glycoproteins, and each has an 11- or 12-amino-acid leader peptide. The N termini of all four flagellins (amino acids 1 through 47 of the mature protein) are very hydrophobic, and this region shows a high degree of homology with the flagellins from Halobacterium halobium.  相似文献   

3.
Flagellar filaments from Methanospirillum hungatei GP1 and JF1 were isolated and subjected to a variety of physical and chemical treatments. The filaments were stable to temperatures up to 80 degrees C and over the pH range of 4 to 10. The flagellar filaments were dissociated in the detergents (final concentration of 0.5%) Triton X-100, Tween 20, Tween 80, Brij 58, N-octylglucoside, cetyltrimethylammonium bromide, and Zwittergent 3-14, remaining intact in only two of the detergents tested, sodium deoxycholate and 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (CHAPS). Spheroplasting techniques were used to separate the internal cells from the complex sheath, S-layer (cell wall), and end plugs of M. hungatei. The flagellar basal structure was visualized after solubilization of membranes by CHAPS or deoxycholate. The basal structure appeared to be a simple knob with no apparent ring or hook structures. The multiple, glycosylated flagellins constituting the flagellar filaments were cleaved by proteases and cyanogen bromide. The cyanogen bromide-generated fragments of M. hungatei GP1 flagellins were partially sequenced to provide internal sequence information. In addition, the amino acid composition of each flagellin was determined and indicated that the flagellins are distinct gene products, rather than differentially glycosylated forms of the same gene product.  相似文献   

4.
Escherichia coli morphotype E flagellar filaments have a characteristic surface pattern of short-pitch loops when examined by electron microscopy. Seven of the 50 known E. coli H (flagellar antigen) serotypes (H1, H7, H12, H23, H45, H49, and H51) produce morphotype E filaments. Polymerase chain reaction was used to amplify flagellin structural (fliC) genes from E. coli strains producing morphotype E flagellar filaments and from strains with flagellar filaments representing other morphotypes. A single DNA fragment was obtained from each strain, and the size of the amplified DNA correlated with the molecular mass of the corresponding flagellin protein. This finding and hybridization data suggest that these bacteria are monophasic. fliC genes from three E. coli serotypes (H1, H7, and H12) possessing morphotype E flagellar filaments were sequenced in order to assess the contribution of conserved flagellin primary sequence to the characteristic filament architecture. The H1 and H12 fliC sequences were identical in length (1,788 bp), while the H7 fliC sequence was shorter (1,755 bp). The deduced molecular masses of the FliC proteins were 60,857 Da (H1), 59,722 Da (H7), and 60,978 Da (H12). The H1, H7, and H12 flagellins demonstrated 98 to 99% identity over the amino-terminal region (190 amino acid residues) and 89% (H7) to 99% (H1 and H12) identity in the carboxy-terminal region (100 amino acid residues). The complete primary amino acid sequences for H1 and H12 flagellins differed by only 10 amino acids, accounting for previously reported serological cross-reactions. However, the central region of H7 flagellin had only 38% identity with H1 and H12 flagellins.The characteristic morphology of morphotype E flagellar filaments is therefore not dependent on a highly conserved primary sequence within the exposed central region. Comparison of morphotype E E. coli flagellins with those from E. coli K-12, Serratia marcescens, and several Salmonella serovars supported the established concept of highly conserved terminal regions flanking a variable central region.  相似文献   

5.
The flagella of Methanococcus voltae were isolated by using three procedures. Initially, cells were sheared to release the filaments, which were purified by differential centrifugation and banding in KBr gradients. Flagella were also prepared by solubilization of cells with 1% (vol/vol) Triton X-100 and purified as described above. Both of these techniques resulted in variable recovery and poor yield of flagellar filaments. Purification of intact flagella (filament, hook, and basal body) was achieved by using phase transition separation with Triton X-114. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified flagella revealed two major proteins, with molecular weights of 33,000 and 31,000. This result indicates the likely presence of two flagellins. The filament had a diameter of 13 nm. The basal structure consisted of a small knob, while a slight thickening of the filament immediately adjacent to this area was the only evidence of a hook region. Flagella from three other Methanococcus species were isolated by this technique and found to have the same ultrastructure as flagella from M. voltae. Isolation of flagella from three eubacteria and another methanogen (Methanospirillum hungatei [M. hungatii]) by the phase separation technique indicated that the detergent treatment did not affect the structure of basal bodies. Intact ring structures and well-differentiated hook regions were apparent in each of these flagellar preparations.  相似文献   

6.
Flagellar filaments were isolated from Helicobacter pylori by shearing, and flagellar proteins were further purified by a variety of techniques, including CsCl density gradient ultracentrifugation, pH 2.0 acid disassociation-neutral pH reassociation, and differential ultracentrifugation followed by molecular sieving with a Sephacryl S-500 column or Mono Q anion-exchange column, and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to an Immobilon membrane. Two flagellin species of pI 5.2 and with apparent subunit molecular weights (Mrs) of 57,000 and 56,000 were obtained. N-terminal amino acid analysis showed that the two H. pylori flagellin species were related to each other and shared sequence similarity with the N-terminal amino acid sequence of Campylobacter coli, Bacillus, Salmonella, and Caulobacter flagellins. Analysis of the amino acid composition of the predominant 56,000-Mr flagellin species isolated from two strains showed that it was comparable to the flagellins of other species. The minor 57,000-Mr flagellin species contained a higher content of proline. Immunoelectron microscopic studies with polyclonal monospecific H. pylori antiflagellin antiserum and monoclonal antibody (MAb) 72c showed that the two different-Mr flagellin species were located in different regions of the assembled flagellar filament. The minor 57,000-Mr species was located proximal to the hook, and the major 56,000-Mr flagellin composed the remainder of the filament. Western immunoblot analysis with polyclonal rabbit antisera raised against H. pylori or Campylobacter jejuni flagellins and MAb 72c showed that the 56,000-Mr flagellin carried sequences antigenetically cross-reactive with the 57,000-Mr H. pylori flagellin and the flagellins of Campylobacter species. This antigenic cross-reactivity did not extend to the flagellins of other gram-negative bacteria. The 56,000-Mr flagellin also carried H. pylori-specific sequences recognized by two additional MAbs. The epitopes for these MAbs were not surface exposed on the assembled inner flagellar filament of H. pylori but were readily detected by immunodot blot assay of sodium dodecyl sulfate-lysed cells of H. pylori, suggesting that this serological test could be a useful addition to those currently employed in the rapid identification of this important pathogen.  相似文献   

7.
The differences between archaeal and bacterial flagella are becoming more apparent as research on the archaeal structure progresses. One crucial difference is the presence of a leader peptide on archaeal preflagellins, which is removed from the flagellin prior to its incorporation into the flagellar filament. The enzyme responsible for the removal of the flagellin leader peptide was identified as FlaK. FlaK of Methanococcus voltae retains its preflagellin peptidase activity when expressed in Escherichia coli and used in an in vitro assay. Homologous recombination of an integration vector into the chromosomal copy of flaK resulted in a non-motile, non-flagellated phenotype. The flagellins of the mutant had larger molecular weights than their wild-type counterparts, as expected if they retained their 11- to 12-amino-acid leader peptide. Membranes of the flaK mutant were unable to process preflagellin in the in vitro assay. Site-directed mutagenesis demonstrated that two aspartic acid residues conserved with ones in type IV prepilin peptidases were necessary for proper recognition or processing of the preflagellin. As bacterial flagellins lack a leader peptide and a peptidase is not required for export and assembly, the requirement for FlaK further emphasizes the similarity archaeal flagella have with type IV pili, rather than with bacterial flagella.  相似文献   

8.
Isolation and characterization of Campylobacter flagellins.   总被引:18,自引:7,他引:11       下载免费PDF全文
Sequential acid pH dissociation, differential ultracentrifugation, and neutral pH reassociation were used to partially purify serotypically distinct flagella from three strains of Campylobacter jejuni and the two antigenic phases of flagella of Campylobacter coli VC167. Each C. jejuni flagellin and C. coli VC167 antigenic phase 1 flagellin were purified to homogeneity by reverse-phase high-performance liquid chromatography with a C8 Spheri-10 column. C. coli VC167 antigenic phase 2 was purified to homogeneity by ion-exchange chromatography with a Mono-Q column. Amino acid compositional analysis put the C. jejuni flagellin molecular weight in the range 63,200 to 63,800 and the C. coli antigenic phase 1 and 2 flagellins at 61,500 and 59,500, respectively. The amino acid compositions of the C. jejuni were similar to each other and to the C. coli VC167 antigenic phase 1 and phase 2 flagellins. One-dimensional peptide mapping of the C. jejuni flagellins by partial digestion with trypsin or chymotrypsin confirmed the structural similarities of the C. jejuni flagellins and the C. coli VC167 antigenic phase 1 flagellin and showed that C. coli VC167 antigenic phase 2 flagellin was structurally distinct from the phase 1 flagellin. The antigenic phase 2 flagellin was especially sensitive to digestion by chymotrypsin. Amino-terminal sequence analysis showed that the 20 N-terminal amino acids of the Campylobacter flagellins were highly conserved. The Campylobacter flagellins also shared limited sequence homology with the N-terminal sequences reported for Salmonella and Bacillus flagellins.  相似文献   

9.
The flagellins of Methanospirillum hungatei strains JF1 and GP1, Methanococcus deltae, and Methanothermus fervidus are glycosylated. Isolated flagellar filaments from these organisms are dissociated by low concentrations (0.5% (v/v)) of Triton X-100. Flagellar filaments from other methanogens (Methanococcus voltae, Methanococcus vannielii and Methanoculleus marisnigri) composed of non-glycosylated flagellins are resistant to Triton X-100 treatment. Consequently, the isolation techniques (employing Triton X-100) used to isolate basal body-hook-filament complexes in eubacteria may not be applicable to many methanogens.  相似文献   

10.
The molecular weights of the flagellins of 13 strains of Escherichia coli, each with a different H antigen, were estimated using polyacrylamide gel electrophoresis. In each case only one major polypeptide was demonstrated, although some strains possessed apparently sheathed flagella. Considerable differences in the molecular weight of flagellin accompanied the previously described structural differences between flagella from strains with different H antigens. The relationship between flagellar diameter and the molecular weight of the corresponding flagellins was similar for both unsheathed and apparently sheathed flagella. Crosss-polymerization occurred between seed consisting of fragment of unsheathed flagella and flagellin solution from apparently sheathed flagella and vice versa. Co-polymerization of flagellin from unsheathed flagella and flagellin from apparently sheathed flagella was also demonstrated. These polymerization experiments indicate that the assembly pattern of flagellin molecules is probably the same in all E. coli flagella. The above and other evidence suggests that there is no true sheath, but that the differences in flagellar surface structure between different E. coli flagella are the result of differences in the superficial parts of the flagellin molecules.  相似文献   

11.
Methanococcus voltae is a flagellated member of the Archaea. Four highly similar flagellin genes have previously been cloned and sequenced, and the presence of leader peptides has been demonstrated. While the flagellins of M. voltae are predicted from their gene sequences to be approximately 22 to 25 kDa, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified flagella revealed flagellin subunits with apparent molecular masses of 31 and 33 kDa. Here we describe the expression of a M. voltae flagellin in the bacteria Escherichia coli and Pseudomonas aeruginosa. Both of these systems successfully generated a specific expression product with an apparently uncleaved leader peptide migrating at approximately 26.5 kDa. This source of preflagellin was used to detect the presence of preflagellin peptidase activity in the membranes of M. voltae. In addition to the native flagellin, a hybrid flagellin gene containing the sequence encoding the M. voltae FlaB2 mature protein fused to the P. aeruginosa pilin (PilA) leader peptide was constructed and transformed into both wild-type P. aeruginosa and a prepilin peptidase (pilD) mutant of P. aeruginosa. Based on migration in SDS-PAGE, the leader peptide appeared to be cleaved in the wild-type cells. However, the archaeal flagellin could not be detected by immunoblotting when expressed in the pilD mutant, indicating a role of the peptidase in the ultimate stability of the fusion product. When the +5 position of the mature flagellin portion of the pilin-flagellin fusion was changed from glycine to glutamic acid (as in the P. aeruginosa pilin) and expressed in both wild-type and pilD mutant P. aeruginosa, the product detected by immunoblotting migrated slightly more slowly in the pilD mutant, indicating that the fusion was likely processed by the prepilin peptidase present in the wild type. Potential assembly of the cleaved fusion product by the type IV pilin assembly system in a P. aeruginosa PilA-deficient strain was tested, but no filaments were noted on the cell surface by electron microscopy.  相似文献   

12.
The highly conserved nature of the 5′-termini of all archaeal flagellin genes was exploited by polymerase chain reaction (PCR) techniques to amplify the sequence of a portion of a flagellin gene family from the archaeon Methanococcus vannielii. Subsequent inverse PCR experiments generated fragments that permitted the sequencing of a total of three flagellin genes, which, by comparison with flagellin genes that have been sequenced, from other archaea appear to be equivalent to flaB1, flaB2, and flaB3 of M. voltae. Analysis of purified M. vannielii flagellar filaments by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed two major flagellins (Mr= 30 800 and 28 600), whose N-terminal sequences identified them as the products of the flaB1 and flaB2 genes, respectively. The gene product of flaB3 could not be detected in flagellar filaments by SDS-PAGE. The protein sequence data, coupled with the DNA sequences, demonstrated that both FlaB1 and FlaB2 flagellins are translated with a 12-amino acid signal peptide which is absent from the mature protein incorporated into the flagellar filament. These data suggest that archaeal flagellin export differs significantly from that of bacterial flagellins.  相似文献   

13.
In order to circumvent problems associated with direct chemical analysis of the phase-1 flagellar filament protein (flagellin) of Salmonella typhimurium, the covalent structure was determined by recombinant DNA procedures. The corresponding structural gene (H-1i) was cloned into plasmid pBR322 in a 4.3-kilobase fragment produced by EcoRI digestion of chromosomal DNA, and the nucleotide sequence of the region specifying the flagellar protein was determined. Comparison of the data obtained with the limited information available for other salmonellar flagellins supported the concept that both ends of the molecule are conserved in this genus. Additionally, a conservation of base sequence in the region of H-1 genes coding for the N-terminal end of flagellins was apparent, suggesting that this area may have an additional regulatory role. The i flagellin was found to be unrelated to proteins in the NBRF data base with the exception of other flagellins. The three flagellins which have been sequenced to date (those produced by Bacillus subtilis, Caulobacter crescentis, and phase-1 S. typhimurium) show homologies in amino acid sequence at both the N-terminal and C-terminal ends despite large differences in their total molecular weight, and comparison suggests that B. subtilis and Salmonella are more closely related to each other than either is to Caulobacter.  相似文献   

14.
In high (45 mM)-phosphate medium, Methanospirillum hungatei strains GP1 and JF1 grew as very long, nonmotile chains of cells that did not possess flagella. However, growth in lower (3 or 30 mM)-phosphate medium resulted in the production of mostly single cells and short chains that were motile by means of two polar tufts of flagella, which transected the multilayered terminal plug of the cell. Electron microscopy of negatively stained whole mounts revealed a flagellar filament diameter of approximately 10 nm. Flagellar filaments were isolated from either culture fluid or concentrated cell suspensions that were subjected to shearing. Flagellar filaments were sensitive to treatment with both Triton X-100 and Triton X-114 at concentrations as low as 0.1% (vol/vol). The filaments of both strains were composed of two flagellins of Mr 24,000 and 25,000. However, variations in trace element composition of the medium resulted in the production of a third flagellin in strain JF1. This additional flagellin appeared as a ladderlike smear on sodium dodecyl sulfate-polyacylamide gels with a center of intensity of Mr 35,000 and cross-reacted with antisera produced from filaments containing only the Mr-24,000 and -25,000 flagellins. On sodium dodecyl sulfate-polyacrylamide gels, all flagellins stained by the thymol-sulfuric acid and Alcian blue methods, suggesting that they were glycosylated. This was further supported by chemical deglycosylation of the strain JF1 flagellins, which resulted in a reduction in their apparent molecular weight on sodium dodecyl sulfate-polyacylamide gels. Heterologous reactions to sera raised against the flagella from each strain were limited to the Mr-24,000 flagellins.  相似文献   

15.
We obtained a three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus CB15 from electron micrographs of negatively stained preparations. The C. crescentus filament appears, both in negative stain and in the frozen-hydrated state, significantly smoother and narrower than other filaments. Its helical symmetry, and unit cell size, however, are similar to that of other filaments. Although the molecular weight of the C. crescentus flagellin is about half that of other plain flagellins, there is only one monomer per unit cell as indicated by diffraction studies and by linear mass density measurements with the scanning transmission electron microscope. Alignment of the primary amino acid sequences of Salmonella typhimurium (serotype i) and C. crescentus (29,000 Mr) flagellins shows that whereas there is homology at the amino and carboxyterminal ends of the two sequences, the central segment of the S. typhimurium sequence has no homology to that of C. crescentus. A correlated comparison between the three-dimensional reconstructions of the two filaments and primary amino acid sequences of the two flagellins suggests that: (1) the C. crescentus subunit is missing the outer molecular domain but is, otherwise, similar to that of S. typhimurium; (2) the outer molecular domain in S. typhimurium corresponds, therefore, to a central stretch of the primary amino acid sequence; and (3) the outer molecular domain, missing in C. crescentus, is not obligatory for flagellar motility.  相似文献   

16.
The highly conserved nature of the 5′-termini of all archaeal flagellin genes was exploited by polymerase chain reaction (PCR) techniques to amplify the sequence of a portion of a flagellin gene family from the archaeon Methanococcus vannielii. Subsequent inverse PCR experiments generated fragments that permitted the sequencing of a total of three flagellin genes, which, by comparison with flagellin genes that have been sequenced, from other archaea appear to be equivalent to flaB1, flaB2, and flaB3 of M. voltae. Analysis of purified M. vannielii flagellar filaments by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed two major flagellins (Mr= 30 800 and 28 600), whose N-terminal sequences identified them as the products of the flaB1 and flaB2 genes, respectively. The gene product of flaB3 could not be detected in flagellar filaments by SDS-PAGE. The protein sequence data, coupled with the DNA sequences, demonstrated that both FlaB1 and FlaB2 flagellins are translated with a 12-amino acid signal peptide which is absent from the mature protein incorporated into the flagellar filament. These data suggest that archaeal flagellin export differs significantly from that of bacterial flagellins. Received: 27 November 1997 / Accepted: 19 March 1998  相似文献   

17.
Pseudomonas aeruginosa a-type strains produce flagellin proteins which vary in molecular weight between strains. To compare the properties of a-type flagellins, the flagellin genes of several Pseudomonas aeruginosa a-type strains, as determined by interaction with specific anti-a monoclonal antibody, were cloned and sequenced. PCR amplification of the a-type flagellin gene fragments from five strains each yielded a 1.02-kb product, indicating that the gene size is not likely to be responsible for the observed molecular weight differences among the a-type strains. The flagellin amino acid sequences of several a-type strains (170018, 5933, 5939, and PAK) were compared, and that of 170018 was compared with that of PAO1, a b-type strain. The former comparisons revealed that a-type strains are similar in amino acid sequence, while the latter comparison revealed differences between 170018 and PAO1. Posttranslational modification was explored for its contribution to the observed differences in molecular weight among the a-type strains. A biotin-hydrazide glycosylation assay was performed on the flagellins of three a-type strains (170018, 5933, and 5939) and one b-type strain (M2), revealing a positive glycosylation reaction for strains 5933 and 5939 and a negative reaction for 170018 and M2. Deglycosylation of the flagellin proteins with trifluoromethanesulfonic acid (TFMS) confirmed the glycosylation results. A molecular weight shift was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis for the TFMS-treated flagellins of 5933 and 5939. These results indicate that the molecular weight discrepancies observed for the a-type flagellins can be attributed, at least in part, to glycosylation of the protein. Anti-a flagellin monoclonal antibody reacted with the TFMS-treated flagellins, suggesting that the glycosyl groups are not a necessary component of the epitope for the human anti-a monoclonal antibody. Comparisons between a-type sequences and a b-type sequence (PAO1) will aid in delineation of the epitope for this monoclonal antibody.  相似文献   

18.
19.
Both a- and b-type purified flagellins from a number of Pseudomonas aeruginosa strains grown in radiolabeled phosphate were shown to be phosphorylated. Analysis of partial acid-hydrolyzed flagellar filaments revealed that 32Pi was in phosphotyrosine. Three 32P-phosphopeptides apparently are common to a- and b-type flagellins, but a fourth peptide was found only in b-type hydrolysates. P. aeruginosa PAK flagellin, containing only two tyrosines, both in the variable region, was readily labeled and gave the same peptide pattern as flagellins containing additional tyrosines. Data showing that a- and b-type flagellins gave positive immunoblots with antiphosphotyrosine monoclonal antibody and that release of P(i) by alkaline phosphatase occurred indicated that unmodified tyrosine phosphate exists in flagellin.  相似文献   

20.
Recent advances in the structure and assembly of the archaeal flagellum   总被引:4,自引:0,他引:4  
Archaeal motility occurs through the rotation of flagella that are distinct from the flagella found on bacteria. The differences between the two structures include the multi-flagellin nature of the archaeal filament, the widespread posttranslational modification of the flagellins and the presence of a short signal peptide on each flagellin that is cleaved by a specific signal peptidase prior to the incorporation of the mature flagellin into the flagellar filament. Research has revealed similarities between the archaeal flagellum and the type IV pilus, including the presence of similar unusual signal peptides on the flagellins and pilins, similarities in the amino acid sequences of the major structural proteins themselves, as well as similarities between potential assembly and processing components. The recent suggestion that type IV pili are part of a family of cell surface complexes, coupled with the similarities between type IV pili and archaeal flagella, raise questions about the evolution of these systems and possible inclusion of archaeal flagella into this surface complex family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号