首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophil recruitment at sites of inflammation is regulated by a series of adhesion and activation events. L-selectin (CD62L) is a leukocyte expressed adhesion protein that is important for neutrophil accumulation and rolling along the vascular endothelium. L-selectin is unique from other adhesion molecules involved in leukocyte transmigration in that its adhesiveness appears to be regulated partly by rapid endoproteolysis. Cleavage of L-selectin occurs within a membrane-proximal region that results in ectodomain shedding and retention of a 6-kDa transmembrane fragment. The cleavage domain of L-selectin has been well characterized through mutational analysis. Whether the cytoplasmic domain of L-selectin also plays a role in regulating shedding is controversial. We have previously shown that the Ca(2+)-sensing protein calmodulin (CaM) constitutively associates with the cytoplasmic domain of L-selectin in transfected cell lines. However, in the absence of mapping and mutational analysis of the CaM-binding region of L-selectin, there remains no direct evidence that this interaction affects shedding. Using synthesized peptides and expressed L-selectin constructs, we demonstrate that CaM binding activity occurs in the membrane-proximal region of the cytoplasmic domain. Mutations engineered in this region that prevent CaM binding increase the proteolytic turnover of L-selectin. Moreover, we demonstrate that CaM binding to the 6-kDa transmembrane fragment is greatly reduced compared with intact L-selectin in neutrophils, suggesting that CaM binding is regulated. These data imply that the cytoplasmic domain of L-selectin can regulate shedding by a mechanism in which bound CaM may operate as a negative effector.  相似文献   

2.
The interaction of L-selectin expressed on leukocytes with endothelial cells leads to capture and rolling and is critical for the recruitment of leukocytes into sites of inflammation. It is known that leukocyte activation by chemoattractants, the change of osmotic pressure in cell media, or cross-linking of L-selectin all result in rapid shedding of L-selectin. Here we present a novel mechanism for surface cleavage of L-selectin on neutrophils during rolling on a sialyl Lewis x-coated surface that involves mechanical force. Flow cytometry and rolling of neutrophils labeled with Qdot(R)-L-selectin antibodies in an in vitro flow chamber showed that the mechanical shedding of L-selectin occurs during rolling and depends on the amount of shear applied. In addition, the mechanical L-selectin shedding causes an increase in cell rolling velocity with rolling duration, suggesting a gradual loss of L-selectin and is mediated by p38 mitogen-activated protein kinase activation. Thus, these data show that mechanical force induces the cleavage of L-selectin from the neutrophil surface during rolling and therefore decreases the adhesion of cells to a ligand-presenting surface in flow.  相似文献   

3.
The L-selectin adhesion molecule mediates leukocyte recruitment to inflammatory sites and lymphocyte trafficking through the peripheral lymph nodes. In response to leukocyte activation, L-selectin is proteolytically released from the cell surface, disabling leukocytes from the subsequent L-selectin-dependent interactions. We have found that L-selectin shedding is sensitive to sulfhydryl chemistry; it is promoted by thiol-oxidizing or -blocking reagents and inhibited by reducing reagents. Phenylarsine oxide (PAO), a trivalent arsenical that interacts with vicinal dithiols, is most potent in inducing rapid shedding of L-selectin from isolated neutrophils, eosinophils, and lymphocytes as well as from neutrophils in whole blood. PAO does not cause cell activation, nor does it interfere with integrin function or alter the expression of several other cell surface molecules at the low concentrations that induce L-selectin shedding. PAO is not required to enter the cell to induce L-selectin shedding. TAPI-2 ((N-(D,L-[2-(hydroxyaminocarbonyl)-methyl]-4-methylpentanoyl)-L-3-(tert-butyl)-alanyl-l -alanine, 2-aminoethyl amide), which has previously been shown to inhibit the activation-dependent L-selectin shedding, is also capable of inhibiting PAO-induced L-selectin shedding. We hypothesize that PAO-induced L-selectin shedding involves a regulatory molecule, such as protein disulfide isomerase (PDI), an enzyme that plays a role in the formation and rearrangement of disulfide bonds, contains PAO-binding, vicinal dithiol-active sites, and is expressed on the neutrophil surface. Cell surface expression of PDI, L-selectin shedding induced by PDI-blocking Abs and by bacitracin, a known inhibitor of PDI activity, and direct binding of PDI to PAO, provide supporting evidence for this hypothesis.  相似文献   

4.
Exogenously administered glucocorticoids downregulate inflammatory host response, i.e. by inhibition of adhesion molecule expression on leukocyte surfaces. Here, possible associations between the trauma-induced endogenous secretion of cortisol and the expression of neutrophil adhesion molecules (L-selectin/CD62L, CD 11b, CD54) were studied in humans. Standardized elective hip arthroplasty was investigated as an exemplary condition of acute inflammation. In 20 patients, blood for quantification of cortisol and adrenocorticotropic hormone was obtained at minutes 10, 20, 30, 60, hours 1, 2, 4 and 10 and days 1,3 and 7. Expression of L-selectin/CD62L, CD11b and CD54 on neutrophil surfaces was determined preoperatively, and postoperatively at hours 1, 2, 3, 4, and 10 and at days 1 and 3. Secretion of both, adrenocorticotropic hormone and cortisol was significantly increased between 1-10 hours after onset of tissue injury. Compared to baseline values, CD11b expression was increased at hour 1 and normalized after day 1, whereas L-selectin/CD62L expression, mirroring this pattern was decreased until day 1. Patients with high endogenous glucocorticoid secretion exhibited significantly decreased expression selectively of L-selectin/CD62L. However, we also observed that glucocorticoids do not directly induce L-selectin shedding from neutrophil surfaces in vitro, arguing for more indirect glucocorticoid action on adhesion molecule expression. Together, this study showed that increased endogenous cortisol secretion is associated with lower expression of L-selectin on neutrophil surfaces in humans that is consistent with a downmodulating role of this neuroendocrine stress response in inflammatory leukocyte recruitment.  相似文献   

5.
Glucocorticoids can dampen inflammatory responses by inhibiting neutrophil recruitment to tissue sites. The detailed mechanism by which glucocorticoids exert this affect on neutrophils is unknown. L-selectin is a leukocyte cell surface receptor that is implicated in several steps of neutrophil recruitment. Recently, several studies have shown that systemic treatment of animals and humans with glucocorticoids induces decreased L-selectin expression on neutrophils, suggesting one mechanism by which inflammation may be negatively regulated. However, when neutrophils are treated in vitro with glucocorticoids, no effect on L-selectin expression is observed. Thus, the existence of an additional mediator is plausible. In this study, we investigate whether annexin 1 (ANX1), a recognized second messenger of glucocorticoids, could be such a mediator. We show that ANX1 induces a dose- and time-dependent decrease in L-selectin expression on both peripheral blood neutrophils and monocytes but has no effect on lymphocytes. The loss of L-selectin from neutrophils is due to shedding that is mediated by a cell surface metalloprotease ("sheddase"). Using cell shape and a beta(2) integrin activation epitope, we show that the ANX1-induced shedding of L-selectin appears to occur without overt cell activation. These data may provide the basis for further understanding of mechanisms involved in the down-regulation of inflammatory responses.  相似文献   

6.
Altered leukocyte/cytokine response to inflammation has been observed in human and experimental portal hypertension. The aim of this study was to characterize leukocyte adhesion in portal hypertensive (PPVL) rats stimulated with endotoxin. Leukocyte rolling, adhesion, and migration assessed by intravital microscopy were impaired in mesenteric venules after lipopolysaccharide administration (150 microg/kg) in PPVL vs. sham-operated rats. Analysis of leukocyte L-selectin expression and soluble L-selectin showed that this defective adhesion was related to increased L-selectin shedding. In vitro experiments using isolated leukocytes treated with phorbol 12-myristate 13-acetate showed that monocytes and neutrophils but not lymphocytes were hyperreactive to cell activation, as measured by CD11b overexpression and increased L-selectin shedding in PPVL rats. However, neutrophil emigration in liver sinusoids and in the lung 3 h after endotoxin injection were similar in both groups of animals. Thus the alterations in leukocyte activation and adhesion molecule expression observed in this study may contribute to a better understanding of the higher susceptibility and severity of bacterial infections in cirrhotic patients with portal hypertension.  相似文献   

7.
Neutrophils, the early responders of the immune system, eliminate intruders, but their over-activation can also instigate tissue damage leading to various autoimmune and inflammatory disease conditions. As approaches causing neutropenia are associated with immunodeficiency, targeting aberrant neutrophil infiltration offers an attractive strategy in neutrophil-centered diseases including acute lung injury. Rho GTPase family proteins Rho, Rac and Cdc42 play important role as regulators of chemotaxis in diverse systems. Rho inhibitors protected against lung injuries, while genetic Rho-deficiency exhibited neutrophil hyperactivity and exacerbated lung injury. These differential outcomes might be due to distinct effects on different cell types or activation/ inhibition of specific signaling pathways responsible for neutrophil polarity, migration and functions. In this study, we explored neutrophil centric effects of Rho signaling mitigation. Consistent with previous reports, Rho signaling inhibitor Y-27632 provided protection against acute lung injury, but without regulating LPS mediated systemic increase of neutrophils in the circulation. Interestingly, the adoptive transfer approach identified a specific defect in neutrophil migration capacity after Rho signaling mitigation. These defects were associated with loss of polarity and altered actin dynamics identified using time-lapse in vitro studies. Further analysis revealed a rescue of stimulation-dependent L-selectin shedding on neutrophils with Rho signaling inhibitor. Surprisingly, functional blocking of L-selectin (CD62L) led to defective recruitment of neutrophils into inflamed lungs. Further, single-cell level analyses identified MAPK signaling as downstream mechanism of Rho signaling and L-selectin mediated effects. p-AKT levels were diminished in detergent resistance membrane-associated signalosome upon Rho signaling inhibition and blockade of selectin. Moreover, inhibition of AKT signaling as well as selectin blocking led to defects in neutrophil polarity. Together, this study identified Rho-dependent distinct L-selectin and AKT signaling mediated regulation of neutrophil recruitment to inflamed lung tissue.  相似文献   

8.
The application of fluid shear stress on leukocytes is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. The formyl peptide receptor (FPR) on neutrophils, which binds to formyl-methionyl-leucyl-phenylalanine (fMLP) and plays a role in neutrophil chemotaxis, has been implicated as a fluid shear stress sensor that controls pseudopod formation. The role of shear forces on earlier indicators of neutrophil activation, such as L-selectin shedding and α(M)β(2) integrin activation, remains unclear. Here, human neutrophils exposed to uniform shear stress (0.1-4.0 dyn/cm(2)) in a cone-and-plate viscometer for 1-120 min showed a significant reduction in both α(M)β(2) integrin activation and L-selectin shedding after stimulation with 0.5 nM of fMLP. Neutrophil resistance to activation was directly linked to fluid shear stress, as the response increased in a shear stress force- and time-dependent manner. Significant shear-induced loss of FPR surface expression on neutrophils was observed, and high-resolution confocal microscopy revealed FPR internalized within neutrophils. These results suggest that physiological shear forces alter neutrophil activation via FPR by reducing L-selectin shedding and α(M)β(2) integrin activation in the presence of soluble ligand.  相似文献   

9.
The initiating step of neutrophil-induced cytotoxicity in the liver is the recruitment of these phagocytes into sinusoids. The aim of our study was to compare the efficacy of systemic exposure with individual inflammatory mediators on neutrophil activation and sequestration in the hepatic vasculature of C3Heb/FeJ mice as assessed by flow cytometry and histochemistry, respectively. The CXC chemokine macrophage inflammatory protein-2 (MIP-2; 20 microg/kg) induced a time-dependent upregulation of Mac-1 (318% at 4 h) and shedding of L-selectin (41% at 4 h). MIP-2 treatment caused a temporary increase of sinusoidal neutrophil accumulation at 0.5 h [97 +/- 6 polymorphonuclear leukocytes (PMN)/50 high-power fields (HPF)], which declined to baseline (8 +/- 2) at 4 h. The CXC chemokine KC was largely ineffective in activating neutrophils or recruiting them into the liver. Cytokines (tumor necrosis factor-alpha and interleukin-1alpha) and cobra venom factor substantially increased Mac-1 expression and L-selectin shedding on neutrophils and caused stable sinusoidal neutrophil accumulation (170-220 PMN/50 HPF). Only cytokines induced venular neutrophil margination. Thus CXC chemokines in circulation are less effective than cytokines or complement in activation of neutrophils and their recruitment into the hepatic vasculature in vivo.  相似文献   

10.
It has been recently described that some non-steroidal anti-inflammatory drugs (NSAIDs) are able to induce the shedding of L-selectin in neutrophils, an adhesion molecule that plays an essential role in the inflammatory response. We have found that, according to this capability, NSAIDs could be grouped into three categories. A high releaser group (flufenamic, meclofenamic, and mefenamic acids, diclofenac and aceclofenac), a group of moderate releasers (aspirin, indomethacin, nimesulide, flurbiprofen, and ketoprofen), and a non-releaser group (phenylbutazone and the oxicams, piroxicam and meloxicam). Only NSAIDs from the high releaser group shared diphenylamine in their chemical structure. The amine group of this chemical agent proved to be essential for the anti-L-selectin activity of diphenylamine-based NSAIDs. The presence of a carboxylic acid group in the diphenylamine (N-phenylanthranilic acid) highly increased its ability to reduce the L-selectin surface expression in neutrophils. Diphenylamine and N-phenylanthranilic acid neither affected COX activity in platelets nor modified the activation state of neutrophils. Diphenylamine-related compounds, which include the diphenylamine-based NSAIDs caused a variable reduction in the neutrophil intracellular ATP concentration, which correlated with the differential ability of such compounds to trigger L-selectin shedding (r = 0.97, p < 0.01). Diphenylamine-related compounds failed to down-regulate L-selectin in a tumor necrosis factor-alpha-converting enzyme (TACE)-deficient murine monocytic cell line. Our data indicate that diphenylamine seems to be the structural core of NSAIDs accounting for their down-regulatory activity of L-selectin leukocyte expression. Diphenylamine and its related compounds exert this action on L-selectin through a prostaglandin-independent, TACE-dependent mechanism that seems to be linked to the capability of these agents to uncouple the mitochondrial oxidative phosphorylation.  相似文献   

11.
Glucocorticoids are very effective inhibitors of both the acute and chronic inflammatory response. In this study the hypothesis that glucocorticoids inhibit an early component of the inflammatory response, neutrophil adhesion to endothelium, by down-regulation of adhesion molecules on neutrophils or endothelium was examined. No effect of dexamethasone on neutrophil adhesion to endothelium or of antigen expression by neutrophils or endothelium was found. The mechanism of action of glucocorticoids in the inflammatory response is probably not mediated by alterations in adhesion molecules.  相似文献   

12.
The deposition of immune complexes (IC) induces an acute inflammatory response with tissue injury. IC-induced inflammation is mediated by inflammatory cell infiltration, a process highly regulated by expression of multiple adhesion molecules. To assess the role of L-selectin and ICAM-1 in this pathogenetic process, the cutaneous reverse passive Arthus reaction was examined in mice lacking L-selectin (L-selectin(-/-)), ICAM-1 (ICAM-1(-/-)), or both (L-selectin/ICAM-1(-/-)). Edema and hemorrhage, which peaked 4 and 8 h after IC challenge, respectively, were significantly reduced in L-selectin(-/-), ICAM-1(-/-), and L-selectin/ICAM-1(-/-) mice compared with wild-type littermates. In general, edema and hemorrhage were more significantly inhibited in ICAM-1(-/-) mice than in L-selectin(-/-) mice, but were most significantly reduced in L-selectin/ICAM-1(-/-) mice compared with ICAM-1(-/-) or L-selectin(-/-) mice. Decreased edema and hemorrhage correlated with reduced neutrophil and mast cell infiltration in all adhesion molecule-deficient mice, but leukocyte infiltration was most affected in L-selectin/ICAM-1(-/-) mice. Reduced neutrophil and mast cell infiltration was also observed for all mutant mice in the peritoneal Arthus reaction. Furthermore, cutaneous TNF-alpha production was inhibited in each deficient mouse, which paralleled the reductions in cutaneous inflammation. These results indicate that ICAM-1 and L-selectin cooperatively contribute to the cutaneous Arthus reaction by regulating neutrophil and mast cell recruitment and suggest that ICAM-1 and L-selectin are therapeutic targets for human IC-mediated disease.  相似文献   

13.
Exposure to naturally occurring hydrocarbon oils is associated with the development of chronic inflammation and a wide spectrum of pathological findings in humans and animal models. The mechanism underlying the unremitting inflammatory response to hydrocarbons remains largely unclear. The medium-length alkane 2,6,10,14 tetramethylpentadecane (also known as pristane) is a hydrocarbon that potently elicits chronic peritonitis characterized by persistent infiltration of neutrophils and monocytes. In this study, we reveal the essential role of IL-1α in sustaining the chronic recruitment of neutrophils following 2,6,10,14 tetramethylpentadecane treatment. IL-1α and IL-1R signaling promote the migration of neutrophils to the peritoneal cavity in a CXCR2-dependent manner. This mechanism is at least partially dependent on the production of the neutrophil chemoattractant CXCL5. Moreover, although chronic infiltration of inflammatory monocytes is dependent on a different pathway requiring TLR-7, type I IFN receptor, and CCR2, the adaptor molecules MyD88, IL-1R-associated kinase (IRAK)-4, IRAK-1, and IRAK-2 are shared in regulating the recruitment of both monocytes and neutrophils. Taken together, our findings uncover an IL-1α-dependent mechanism of neutrophil recruitment in hydrocarbon-induced peritonitis and illustrate the interactions of innate immune pathways in chronic inflammation.  相似文献   

14.
Here we accurately recreate the mechanical shedding of L-selectin and its effect on the rolling behavior of neutrophils in vitro using the adhesive dynamics simulation by incorporating the shear-dependent shedding of L-selectin. We have previously shown that constitutively expressed L-selectin is cleaved from the neutrophil surface during rolling on a sialyl Lewis x-coated planar surface at physiological shear rates without the addition of exogenous stimuli. Utilizing a Bell-like model to describe a shedding rate which presumably increases exponentially with force, we were able to reconstruct the characteristics of L-selectin-mediated neutrophil rolling observed in the experiments. First, the rolling velocity was found to increase during rolling due to the mechanical shedding of L-selectin. When most of the L-selectin concentrated on the tips of deformable microvilli was cleaved by force exerted on the L-selectin bonds, the cell detached from the reactive plane to join the free stream as observed in the experiments. In summary, we show through detailed computational modeling that the force-dependent shedding of L-selectin can explain the rolling behavior of neutrophils mediated by L-selectin in vitro.  相似文献   

15.
During inflammation, leukocyte emigration from the circulation can be directed by the endothelium, in part by the inducible endothelial adhesion ligand for L-selectin. In this study, endothelial L-selectin ligand expression was localized by immuno-histochemistry in human lung in several different types of lung inflammation and in systemic inflammation. Endothelial L-selectin ligand was not seen in normal lung or in acute pneumonia involving neutrophil accumulation. However, the endothelial ligand was seen in most cases of chronic interstitial pneumonia with mononuclear cell accumulation (a mean of 5.9% of microvessels positive). Regarding granulomatous conditions, in sarcoidosis the endothelial ligand was not identified, but in tuberculous infection some expression was seen in a minority of cases (mean 3.3% of microvessels positive). In contrast, consistent, typically extensive ligand induction (mean 33.4% of microvessels positive) was present in bronchiectatic lung showing prominent lymphocytic accumulation and venules with thickened (high) endothelium, the latter being normally characteristic of lymphoid tissue in which L-selectin ligand is known to be constitutively expressed. Lung from subjects with systemic infection was negative for endothelial expression of the ligand. These studies show how in a defined extralymphoid tissue induction of endothelial L-selectin ligand depended not only on the presence or absence of an inflammatory state, but also on the nature of the inflammation.  相似文献   

16.
Repeated Ag exposure results in a shift in the time course of contact hypersensitivity (CH) from a typical delayed-type to an immediate-type response followed by a late phase reaction. Chronic CH responses are clinically relevant to human skin allergic diseases, such as atopic dermatitis, that are usually caused by repeated stimulation with environmental Ags. Chronic inflammatory responses result in part from infiltrating leukocytes. To determine the role of leukocyte adhesion molecules in chronic inflammation, chronic CH responses were assessed in mice lacking L-selectin, ICAM-1, or both adhesion molecules. Following repeated hapten sensitization for 24 days at 2-day intervals, wild-type littermates developed an immediate-type response at 30 min after elicitation, followed by a late phase reaction. By contrast, loss of ICAM-1, L-selectin, or both, eliminated the immediate-type response and inhibited the late phase reaction. Similar results were obtained when wild-type littermates repeatedly exposed to hapten for 22 days were treated with mAbs to L-selectin and/or ICAM-1 before the elicitation on day 24. The lack of an immediate-type response on day 24 paralleled a lack of mast cell accumulation after 30 min of elicitation and decreased serum IgE production. Repeated Ag exposure in wild-type littermates resulted in increased levels of serum L-selectin, a finding also observed in atopic dermatitis patients. The current study demonstrates that L-selectin and ICAM-1 cooperatively regulate the induction of the immediate-type response by mediating mast cell accumulation into inflammatory sites and suggests that L-selectin and ICAM-1 are potential therapeutic targets for regulating human allergic reactions.  相似文献   

17.
Neutrophil trafficking in lung involves transendothelial migration, migration in tissue interstitium, and transepithelial migration. In a rat model of IgG immune complex-induced lung injury, it was demonstrated that neutrophil emigration involves regulatory mechanisms including complement activation, cytokine regulation, chemokine production, activation of adhesion molecules, and their respective counter receptors. The process is presumably initiated and modulated by the production of early response cytokines and chemokines from lung cells, especially from alveolar macrophages. TNF-alpha and IL-1 up-regulate intracellular adhesion molecule-1 (ICAM-1) and E-selectin, setting the stage for neutrophil migration through endothelium. The CXC chemokines, such as macrophage inflammatory protein (MIP)-2 and cytokine-inducible neutrophil chemoattractant (CINC), constitute chemokine gradient to orchestrate neutrophil migration in lung. Complement activation induced by IgG immune complex deposition is another important event leading to neutrophil accumulation in lung. Complement activation product C5a not only plays an important role in chemoattracting neutrophils into lung, but regulates adhesion molecules, chemokines, and cytokines expression. In addition, oxidative stress may regulate neutrophil accumulation in lung by modulation of adhesion molecule activation and chemokine production. In this review, we focus on the current knowledge of the mechanisms leading to accumulation of neutrophils during acute lung injury.  相似文献   

18.
There is increasing evidence that the ligation of adhesion molecules such as L-selectin can activate phagocytes to their full inflammatory potential. Sulfatide has been established as ligand for L-selectin and shown to trigger intracellular signals in human neutrophils. However, it remains unclear whether the ligation of L-selectin with sulfatide affects neutrophil phagocytosis. We studied the effects of sulfatide upon Fc gamma R- and CR3-mediated human neutrophil phagocytosis. Adhesion of the cells to a sulfatide-coated surface resulted in a dose-dependent enhancement of phagocytosis mediated via Fc gamma R or CR3, or both receptors. Galactocerebroside, but not glucocerebroside, also enhanced phagocytosis by neutrophils; therefore, galactose residue is thought to be required on ceramide molecules for the activation. Chymotrypsin-treated neutrophils, from which most L-selectin had been removed, reacted with sulfatide and galactocerebroside to enhance phagocytosis. These results suggest that an unidentified receptor for these cerebrosides exists on neutrophils and participates in the enhancement of phagocytosis.  相似文献   

19.
1. The high viscoelastic property of neutrophils is the major factor contributing to their extensive accumulation (more than 50% of circulating neutrophils) in the pulmonary micro vasculature.2. The cholinergic parasympathetic and adrenergic sympathetic nerves modulate the size of the pulmonary neutrophil pool by regulating arterial and venous pressures, increases in which promote or reduce neutrophil transit times, respectively.3. Biochemical factors, such as the cytokines and complement, which act upon the neutrophils to increase their viscoelasticity and promote the interaction of neutrophil cell adhesion molecules with counter ligands on the endothelial cell, are the primary factors regulating the size of the pulmonary pool of vascular neutrophils.4. The primary afferent nerves, through their release of substance P, are the most important neural elements regulating neutrophil accumulation and function. Substance P facilitates the actions of other inflammatory agents (e.g. LTB4, platelet activating factor) on neutrophil adhesion, migration and biochemical reactivity.5. The sympathetic nervous system indirectly regulates neutrophil functions by regulating the release of an immunosuppressive factor from submandibular glands.6. With continued study of nervous system regulation of neutrophil function, the mechanisms by which psychological factors affect these cells will eventually be revealed.  相似文献   

20.
Rolling dynamics of a neutrophil with redistributed L-selectin   总被引:4,自引:0,他引:4  
The most common white blood cell is the neutrophil, which slowly rolls along the walls of blood vessels due to the coordinated formation and breakage of chemical selectin-carbohydrate bonds. We show that L-selectin receptors are rapidly redistributed to form a cap at one end of the cell membrane during rolling via selectins or chemotactic stimulation. This topography significantly alters the adhesive dynamics as demonstrated by computer simulations of neutrophils rolling on a carbohydrate selectin-ligand substrate under flow. It was found that neutrophils with a redistributed L-selectin cap roll on sialyl Lewis-x with a quasi-periodic motion, as characterized by relatively low velocity intervals interspersed with regular jumps in the rolling velocity. On average, neutrophils with redistributed L-selectin rolled at a lower velocity when compared with cells having a uniform L-selectin distribution of equal average density. We speculate on the possible biological implications that these differences in adhesion dynamics will have during the inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号