首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Capsaicin, substance P, and ovalbumin, instilled into the bladders of naive and ovalbumin (OVA) sensitized guineapigs caused inflammation, as indicated by increased vascular permeability. Histological changes after exposure to these compounds progressed with time from intense vasodilatation to marginalization of granulocytes followed by interstitial migration of leukocytes. In vitro incubation of guinea-pig bladder tissue with substance P and ovalbumin stimulated release of prostaglandin D(2) and leukotrienes. In vitro incubation of bladder tissue with capsaicin, OVA, prostaglandin D(2), leukotriene C(4), histamine, or calcium ionophore A-23587 all stimulated substance P release. These data suggest that bladder inflammation initiated by a variety of stimuli could lead to a cyclic pattern of release of inflammatory mediators and neuropeptides, which could result in amplification and persistence of cystitis after the inciting cause has subsided.  相似文献   

2.
Mast cell activation, or neurogenic inflammation, is known to induce lowering of interstitial fluid pressure (P(if)) and plasma protein extravasation (PPE) in several tissues from both rats and mice. To examine a possible role of connective tissue mast cells (CTMCs) in these inflammatory responses, we used mice with dysfunctional CTMCs due to lack of the N-deacetylase/N-sulfotransferase-2 enzyme (NDST-2(-/-)). P(if) and PPE were measured after challenge with compound 48/80 (C48/80), and P(if) alone was measured after treatment either with capsaicin, substance P (SP), or calcitonin gene-related peptide (CGRP). Measurements of P(if) in anesthetized (fentanyl/fluanison and midazolam, 1:1) mice were performed in paw skin with glass capillaries connected to a servo-controlled counterpressure system. PPE was measured with microdialysis by using hollow plasmapheresis fibers (cutoff at 3,000 kDa) placed subcutaneously on the back. Intravenous administration of C48/80 lowered P(if) significantly (P < 0.05) in NDST-2(-/-) mice (-1.67 +/- 0.42 mmHg) compared with vehicle (-0.57 +/- 0.17 mmHg) but the lowering was significantly (P < 0.05) less compared with that of the NDST-2(+/+) mice (-2.31 +/- 0.47 mmHg). PPE was increased 300% after treatment with C48/80 in NDST-2(+/+) mice, whereas there was no increase in PPE in NDST-2(-/-) mice. Capsaicin, SP, and CGRP lowered P(if) significantly (P < 0.05) compared with vehicle and to the same extent in both NDST-2(+/+) and NDST-2(-/-) mice. We can conclude that although NDST-2(-/-) mice demonstrate an altered response in P(if) after mast cell activation, there was no similar alteration after neurogenic inflammation. Therefore, we suggest that neurogenic inflammation in mouse skin is not exclusively dependent on intact CTMCs.  相似文献   

3.
Neurogenic inflammation and migraine: implications for the therapeutics   总被引:3,自引:0,他引:3  
Significant recent advances in molecular pharmacology have elucidated the molecular pathways involved in neurogenic inflammation (NI). The release of tachykinins and endothelin-3 (ET-3) from trigeminal neurons induces dural vascular permeability and vasodilatation via activation of tachykinin receptor 1 (Tacr1) and endothelin receptor type B (Ednrb) on endothelial cells. Endothelial cell receptor stimulation results in cellular contraction, leading to plasma protein extravasation (PPE), which is the most recognized physiological hallmark of NI, and nitric oxide-induced vasodilatation. By contrast, the release of calcitonin gene-related peptide (CGRP) from trigeminal neurons--also a key physiological component of NI--does not affect vascular permeability but does induce neurogenic vasodilatation (NV) via the direct, (i.e., endothelium-independent) relaxation of vascular smooth muscle. The molecular pharmacology of NI is discussed within the context of migraine research and assesses the putative role of the two key physiological components of NI (i.e., PPE and NV) in migraine pathophysiology. The data indicate that the PPE component of NI plays no significant role in migraine but that NV is likely to be involved in migraine pathophysiology.  相似文献   

4.
Neurogenic inflammation, vascular permeability, and mast cells   总被引:6,自引:0,他引:6  
Electrical stimulation (ES) of sensory nerves causes increased vascular permeability and vasodilatation, a process known as neurogenic inflammation. The purpose of this study was to assess the role of mast cells in neurogenic inflammation induced by ES of sensory nerves. ES of the rat saphenous nerve for 1, 3, 5, 15, or 30 min induced a 166 to 436% increase in the amount of 125I-albumin deposited in the skin. Through the initial 15 min of ES, the histamine content of the skin remained unchanged. However, 30 min of ES caused a 22.1% decrease in skin histamine (p less than 0.05). ES for 5 min followed by measurement of vascular permeability from 0 to 30 min thereafter resulted in maximal increases in 125I-albumin in the skin immediately after cessation of the pulse of ES. When skin histamine was measured at various intervals after a 5-min pulse of ES, no change in the histamine content was observed through the subsequent 30 min. When mast cell degranulation was assessed histologically, 5 min of ES failed to stimulate mast cell degranulation. However, 30 min of ES caused a significant increase in the proportion of degranulating mast cells. When draining venous plasma histamine was monitored before, during and after ES, no change in plasma histamine was observed. In contrast, the intradermal injection of 5 micrograms of compound 48/80 produced a significant increase in plasma histamine. In order to examine the possibility that histamine might be released but remain in the skin after ES, skin "blisters" were developed by intradermal injections of saline. There was a significant increase in the amount of 125I-albumin extravasated into blister fluid measured after 3, 5, and 10 min of ES and a significant increase in histamine after 5 or 10 min. Therefore, prolonged ES of sensory nerves can cause mast cell degranulation. However, ES causes increased vascular permeability at times when no mast cell activation can be observed. These data suggest that the initial phases of neurogenic inflammation are independent of mast cell activation.  相似文献   

5.
This communication documents for the first time the presence of an endogeneous macromolecule of biological importance, a lipoprotein, inside normal rat skeletal muscle cells but absent in those from rats made diabetic by streptozotocin treatment. Apoprotein B was localized in the vascular components and interstitial spaces surrounding both control and diabetic extensor digitorum muscles as revealed by immunofluorescence. However, in muscles from control but not diabetic rats, apoprotein B was also observed inside the myofibres, especially in regions adjacent to capillaries. The staining pattern was unaltered by the addition of albumin to the antisera and was absent in all situations in which absorbed antisera were tested.  相似文献   

6.
Most work with the male rat liver carbonic anhydrase isozymes in the past decade has centered on the cytosolic CA III and the mitochondrial CA V. This paper reports that the relative activity of both isozymes is altered in streptozotocin-diabetes. Carbonic anhydrase activity of perfused liver homogenates and disrupted, isolated mitochondria was measured by the mass spectrometric 18O decay technique at 37 degrees C. The contributions of the different isozymes were determined based on intracellular location and sensitivity to acetazolamide inhibition. Diabetes resulted in a twofold increase in the activity of CA V but a halving in the activity of CA III. This is the first time that liver CA V has been shown to be altered by physiological stress. The total carbonic anhydrase activity in the diabetic rat liver was unaltered compared with control rats; however, CA III never accounted for more than 50% of this activity. Since CA isozymes I, II, and IV together account for 30% of the CA activity in control rats and 70% in diabetic rats it is concluded that one or more of these isozymes is subject to regulation in the diabetic male rat. The increase in CA V during diabetes is in accord with this isozyme having an important function in provision of substrate for hepatic gluconeogenesis and ureagenesis.  相似文献   

7.
1. Elevated levels of metallothionein (MT)-I and -II were identified in the liver and kidney of insulin-deficient diabetic rats. 2. The relative rate of MT synthesis and the turnover of cytoplasmic MT were both accelerated in the liver of diabetic rats. 3. The rate of synthesis of MT, but not its cytoplasmic turnover, was increased in diabetic kidney. 4. Maximal relative rates of MT synthesis in liver and kidney were first observed at 4 and 10 days, respectively, after inducing the diabetic condition. 5. The altered metabolism of hepatic MT in diabetic rats was attributed primarily to disturbances in endocrine status, while the altered metabolism of renal MT was largely due to accumulation of excessive dietary copper in the kidney.  相似文献   

8.
Although exogenous phosphatidic acid (PA) has been shown to promote insulin release, the effects of endogenous PA on endocrine function are largely unexplored. In order to generate PA in situ, intact adult-rat islets were treated with exogenous phospholipases of the D type (PLD), and their effects on phospholipid metabolism and on insulin release were studied in parallel. Chromatographically purified PLD from Streptomyces chromofuscus stimulated the accumulation of PA in [14C]arachidonate- or [14C]myristate-prelabelled islets, and also promoted insulin secretion over an identical concentration range. During 30 min incubations, insulin release correlated closely with the accumulation of [14C]arachidonate-labelled PA (r2 = 0.98; P less than 0.01) or [14C]myristate-labelled PA (r2 = 0.97; P less than 0.01). Similar effects were seen both in freshly isolated and in overnight-cultured intact islets. In contrast, PLDs (from cabbage or peanut) which do not support phospholipid hydrolysis at the pH of the extracellular medium also did not promote insulin release. The effects on secretion of the active PLD preparation were inhibited by modest cooling (to 30 degrees C); dantrolene or Co2+ also inhibited PLD-induced secretion without decreasing PLD-induced PA formation. Additionally, the removal of PLD left the subsequent islet responsiveness to glucose intact, further supporting an exocytotic non-toxic mechanism. PLD-induced insulin release did not appear to require influx of extracellular Ca2+, nor could the activation of protein kinase C clearly be implicated. During incubations of 30 min, PLD selectively generated PA; however, more prolonged incubations (60 min) also led to production of some diacyglycerol and free arachidonic acid concomitant with progressive insulin release. These data suggest that PLD activation has both rapid and direct effects (via PA) and more delayed, secondary, effects (via other effects of PA or the generation of other lipid signals). Taken in conjunction with our demonstration that pancreatic islets contain an endogenous PLD which generates PA [Dunlop & Metz (1989) Biochem. Biophys. Res. Commun. 163, 922-928], these studies provide evidence suggesting that PLD activation (and possibly other pathways leading to PA formation) could play a role in stimulus-secretion coupling in pancreatic islets.  相似文献   

9.
The effects of diabetes on heart function may be initiated or compounded by the exaggerated reliance of the diabetic heart on fatty acids and ketones as metabolic fuels. beta-Blocking agents such as metoprolol have been proposed to inhibit fatty acid oxidation. We hypothesized that metoprolol would improve cardiac function by inhibiting fatty acid oxidation and promoting a compensatory increase in glucose utilization. We measured ex vivo cardiac function and substrate utilization after chronic metoprolol treatment and acute metoprolol perfusion. Chronic metoprolol treatment attenuated the development of cardiac dysfunction in streptozotocin (STZ)-diabetic rats. After chronic treatment with metoprolol, palmitate oxidation was increased in control hearts but decreased in diabetic hearts without affecting myocardial energetics. Acute treatment with metoprolol during heart perfusions led to reduced rates of palmitate oxidation, stimulation of glucose oxidation, and increased tissue ATP levels. Metoprolol lowered malonyl-CoA levels in control hearts only, but no changes in acetyl-CoA carboxylase phosphorylation or AMP-activated protein kinase activity were observed. Both acute metoprolol perfusion and chronic in vivo metoprolol treatment led to decreased maximum activity and decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. Metoprolol also increased sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and prevented the reexpression of atrial natriuretic peptide in diabetic hearts. These data demonstrate that metoprolol ameliorates diabetic cardiomyopathy and inhibits fatty acid oxidation in streptozotocin-induced diabetes. Since malonyl-CoA levels are not increased, the reduction in total carnitine palmitoyltransferase I activity is the most likely factor to explain the decrease in fatty acid oxidation. The metabolism changes occur in parallel with changes in gene expression.  相似文献   

10.
Effects of short and long exposure to the diabetic state induced by an injection of streptozotocin to young female rats on glucagon- and catecholamine-sensitive adenylate cyclase activity and adrenergic receptors of hepatic membranes have been studied. The short period of exposure to the diabetic state exhibited an increase in the sensitivity of the enzyme to isoproterenol without changes in the affinity and the number of beta-adrenergic receptors. The increased response of adenylate cyclase activity to isoproterenol was accompanied with a greater GTP-induced lowering of the affinity to the beta-adrenergic agonist in diabetic membranes than in the controls. The chronic diabetic state produced a decrease in the adenylate cyclase activity to hormonal or non-hormonal stimuli with a fall in the number of alpha- and beta-adrenergic receptors. These results suggest that the observed effects of the diabetic state on hormonally sensitive adenylate cyclase activities and their receptor binding sites of the hepatic membranes would vary depending on the duration and/or severity of the diabetic state experimentally induced.  相似文献   

11.
12.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a proinflammatory cytokine that has a central action to reduce food intake and body weight. Consistent with this, GM-CSF knockout mice are more obese and hyperphagic than wild-type mice. However, in lung, GM-CSF is an important determinant of macrophage infiltration. Consequently, we sought to determine if GM-CSF might contribute to adipose tissue macrophage accumulation, insulin resistance, and low-grade inflammation that occurs when animals gain weight on a high-fat diet (HFD). We therefore determined how targeted genetic disruption of GM-CSF can affect adipose tissue macrophage and cytokine gene expression as well as glucose homeostasis by performing hyperinsulinemic-euglycemic clamps. The number of macrophages and CCR2 gene expression in adipose tissue of GM-CSF knockout mice was decreased relative to those in wild-type mice, and the adipocyte size of mesenteric fat was increased in GM-CSF knockout mice on a HFD compared with wild-type mice. The level of mRNA of the proinflammatory cytokines interleukin-1beta, tumor necrosis factor-alpha, and macrophage inflammatory protein-1alpha was significantly lower in mesenteric fat of GM-CSF knockout mice on the HFD than in wild-type mice. Using the hyperinsulinemic-euglycemic clamp technique, GM-CSF knockout mice had greater overall insulin sensitivity. This increase was due to enhanced peripheral uptake and utilization of glucose rather than to increased hepatic insulin sensitivity. Collectively, the data suggest that the GM-CSF knockout mutation ameliorates peripheral insulin resistance in spite of increased adiposity by reducing inflammation in adipose tissue in response to a HFD.  相似文献   

13.
The primary objective of this study was to assess the efficacy of ferulic acid (FA), a phenolic antioxidant, in ameliorating oxidative stress in the testis and liver of diabetic pubertal rats. Male (6 wk old) rats were rendered diabetic by an acute dose (60 mg/kg body weight, intraperitoneal) of streptozotocin (STZ) and were given oral supplementation of FA (50 mg/kg body weight/d on alternate days) for 4 weeks. The protective efficacy of FA was assessed by measuring markers of oxidative stress in the testis and liver along with the effect of stress on lipid profile in serum/testis. Terminally, the testis (cytosol and mitochondria) of STZ-administered rats exhibited a marked elevation in the status of lipid peroxidation and enhanced reactive oxygen species (ROS) production compared to the non-diabetic controls. FA treatment completely normalized the oxidative impairments in the testis. Further, STZ-induced depletion of reduced glutathione (GSH) and elevated protein carbonyl content in the testis were restored to normalcy by FA treatment. The protective effects of FA were also discernible in the testis in terms of restoration of activities of various antioxidant enzymes in the diabetic rats. Furthermore, STZ-induced oxidative impairments in the liver were also abrogated significantly by FA treatment. STZ-induced perturbations in serum and testicular lipid profiles in the diabetic rats were also significantly attenuated by FA treatment. Collectively, these results indicate that oral supplementation of FA can significantly mitigate diabetes-associated oxidative impairments in the testis as well as in the liver and suggests the efficacy of FA as a complementary therapeutic agent in the management of diabetes-associated oxidative stress-mediated complications.  相似文献   

14.
The accumulation and subcellular distribution of copper in the kidney of streptozotocin-diabetic rats were investigated. Male Sprague-Dawley rats received streptozotocin (50 mg/kg body wt on two consecutive days) intraperitoneally and were fed either commercial or purified diet. The concentrations of copper, zinc, iron, and manganese present in intact kidney, renal cortex, and renal medulla were compared at various times. Chow-fed diabetic rats had a renal copper concentration 2.6 times greater than age-matched controls after 2 weeks. The concentration of zinc was only 30% higher in diabetic kidney than in control tissue, whereas the iron and manganese concentrations were similar for both groups. The additional complement of renal copper was localized entirely in the cortex and was significantly reduced by oral treatment with penicillamine, a copper chelating agent. When diabetic rats were fed purified diet (15-20 ppm Cu), the quantity of copper accumulated in the renal cortex increased from 2.3 to 8.7-fold higher than in control tissue from 1 to 4 weeks, respectively, after injection with streptozotocin. Copper levels in. both the soluble and particulate (165, 000g pellet) fractions of diabetic renal cortex were similarly increased at each time. Gel filtration Chromatographic analysis of the cytosol showed that all of the copper accumulated in the soluble fraction was associated with metallothionein. The distribution of excess copper in the particulate fraction was determined by differential centrifugation. The additional quantity of metal was localized in the crude nuclear fraction of renal cortex in the diabetic rat. Further analysis revealed that the lysosomal fraction from 3-weeek diabetic rats had a copper level 16-fold higher than in the controls. The possibility that accumulation of excessive levels of copper in the streptozotocin-diabetic kidney may contribute to the development of diabetic nephropathy is discussed.  相似文献   

15.
Local injury induces a complex orchestrated response to stimulate healing of injured tissues, cellular regeneration and phagocytosis. Practically, inflammation is defined as a defense process whereby fluid and white blood cells accumulate at a site of injury. The balance of cytokines, chemokines, and growth factors is likely to play a key role in regulating important cell functions such as migration, proliferation, and matrix synthesis during the process of inflammation. Hence, the initiation, maintenance, and resolution of innate responses depend upon cellular communication. A process similar to tissue repair and subsequent scarring is found in a variety of fibrotic diseases. This may occur in a single organ such as liver, kidneys, pancreas, lung, skin, and heart, but fibrosis may also have a more generalized distribution such as in atherosclerosis. The purpose of this review is to summarize recent advances on the contribution of gap junction-mediated intercellular communication in the modulation of the inflammatory response and tissue repair.  相似文献   

16.
Gap junctional communication in tissue inflammation and repair   总被引:9,自引:0,他引:9  
Local injury induces a complex orchestrated response to stimulate healing of injured tissues, cellular regeneration and phagocytosis. Practically, inflammation is defined as a defense process whereby fluid and white blood cells accumulate at a site of injury. The balance of cytokines, chemokines, and growth factors is likely to play a key role in regulating important cell functions such as migration, proliferation, and matrix synthesis during the process of inflammation. Hence, the initiation, maintenance, and resolution of innate responses depend upon cellular communication. A process similar to tissue repair and subsequent scarring is found in a variety of fibrotic diseases. This may occur in a single organ such as liver, kidneys, pancreas, lung, skin, and heart, but fibrosis may also have a more generalized distribution such as in atherosclerosis. The purpose of this review is to summarize recent advances on the contribution of gap junction-mediated intercellular communication in the modulation of the inflammatory response and tissue repair.  相似文献   

17.
We have previously reported that rats which have been suffering from streptozotocin-diabetes for 4 weeks show a supranormal mast cell mediated mitogenesis in mesenteric windows and in the skin; this late emerging, augmented mitogenic responsiveness appears, to be unaffected by insulin per se. To test whether this increased proliferogenic response is effected by some acquired quality within the tissue rather than a systemic factor in the blood, we studied mast cell mediated mitogenesis in organ-cultured intact mesenteric windows from rats with diabetes of 4 weeks' duration, using a biochemically-defined serum-free growth medium. Mast cells were activated by Compound 48/80 and their secretion was quantified biochemically in terms of histamine release. The mast cell-dependent mitogenic reaction in the predominant, morphologically discrete fibroblasts and mesothelial cells was quantified photometrically using Feulgen-absorption analysis of individual cell nuclei, and by determination of the mitotic index. Both types of target cell responded to a significantly greater degree mitogenically in diabetic compared with control tissue. This finding suggests that a considerable part of the increased mitogenic responsiveness previously observed in diabetic animals in vivo is causally related to some tissue-bound, i.e., cellular and/or extracellular factor(s) acquired during the course of the disease.  相似文献   

18.
Induction of diabetes in rats is associated with a significant elevation in the phenylalanine hydroxylating capacity of the liver. This phenomenon reflects an increase in the abundance of both phenylalanine hydroxylase protein and phenylalanine hydroxylase-specific mRNA. These changes can be abolished by insulin-dependent control of diabetes. We show here that the control of diabetes by oral administration of sodium orthovanadate will also nullify the diabetes-related alterations in phenylalanine hydroxylase expression. In addition, diabetes-induced changes in the extent of phosphorylation of phenylalanine hydroxylase are reversed by either insulin or vanadate treatment in vivo. These treatments also abolished the diabetes-related, approx. 30-fold, decrease in glucagon sensitivity of phenylalanine hydroxylation in isolated liver cells.  相似文献   

19.
We studied the composition of molecular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in normal and streptozotocin-induced diabetic rat retinal pigment epithelium (RPE). Tissues were sequentially extracted with saline (S(1)) and saline-detergent buffers (S(2)). About a 50% decrease in AChE molecular forms was observed in the diabetic RPE compared to the controls. Approximately 70% of the BChE activity in normal RPE was brought into solution and evenly distributed in S(1) and S(2). Analysis of the fractions from RPE revealed the presence of G(A)(1), G(A)(4) and a small proportion of G(H)(4) BChE forms in S(1); whereas G(A)(4) and G(A)(1) molecules predominate in S(2). A 40% decrease in the activity of G(A)(4) in S(2) was observed in the diabetic RPE. Our results show that diabetes caused a remarkable decrease in the activity of cholinesterases molecular forms in the RPE. This might be related to the alterations observed in diabetic retinopathy.  相似文献   

20.
It has been shown that a transient decrease in the osmotic fragility of erythrocytes occurs following induction of inflammation by subcutaneous implantation of polyester sponges in rats. This effect is not due to the presence of stabilising activity in the serum but rather to a change in the nature of the erythrocyte population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号