首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tian J  Wang P  Gao S  Chu X  Wu N  Fan Y 《The FEBS journal》2010,277(23):4901-4908
Protein thermostability can be increased by some glycine to proline mutations in a target protein. However, not all glycine to proline mutations can improve protein thermostability, and this method is suitable only at carefully selected mutation sites that can accommodate structural stabilization. In this study, homology modeling and molecular dynamics simulations were used to select appropriate glycine to proline mutations to improve protein thermostability, and the effect of the selected mutations was proved by the experiments. The structure of methyl parathion hydrolase (MPH) from Ochrobactrum sp. M231 (Ochr-MPH) was constructed by homology modeling, and molecular dynamics simulations were performed on the modeled structure. A profile of the root mean square fluctuations of Ochr-MPH was calculated at the nanosecond timescale, and an eight-amino acid loop region (residues 186-193) was identified as having high conformational fluctuation. The two glycines nearest to this region were selected as mutation targets that might affect protein flexibility in the vicinity. The structures and conformational fluctuations of two single mutants (G194P and G198P) and one double mutant (G194P/G198P) were modeled and analyzed using molecular dynamics simulations. The results predicted that the mutant G194P had the decreased conformational fluctuation in the loop region and might increase the thermostability of Ochr-MPH. The thermostability and kinetic behavior of the wild-type and three mutant enzymes were measured. The results were consistent with the computational predictions, and the mutant G194P was found to have higher thermostability than the wild-type enzyme.  相似文献   

2.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

3.
Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an additional helical subdomain. We designed and produced a number of mutants with the aim to increase its thermostability. Five mutants were designed to create new electrostatic interactions. They all retained catalytic activity but exhibited decreased thermostability relative to the wild-type enzyme. Here, the stabilizing contributions are obviously smaller than the destabilization caused by the introduction of the new side chains. In another mutant, the small helical subdomain was deleted. This mutant lost activity but its melting point was only 3 degrees C lower than that of the wild-type enzyme, which suggests that the subdomain is an independent folding unit and is important for catalytic function. A double mutant was designed to introduce a new disulfide bridge into the enzyme. This mutant is active and has an increased stability (deltaT(m)=3 degrees C, delta(deltaG(u))=1.73 kcal/mol) relative to the wild-type enzyme. Reduction of the disulfide bridge results in destabilization and an altered thermal denaturation behavior. We conclude that rules learned from thermophilic proteins cannot be used in a straightforward way to increase the thermostability of a protein. Creating a crosslink such as a disulfide bond is a relatively sure-fire method but the stabilization may be smaller than calculated due to coupled destabilizing effects.  相似文献   

4.
将含有G138P单点突变和G138P-G247D双点突变的GI结构基因,分别克隆入E.coli-链霉菌穿梭载体pHZ-1272,成功构建了穿梭表达载体pHZGI1和pHZGI2。通过原生质体的转化,将穿梭表达载体异入变铅青链霉菌TK54菌株。30℃振荡培养24h,加入2μg/mL硫链丝菌素诱导表达12h。SDS-PAGE电泳表明,两个穿梭载体在TK54菌株内表达出42.5kD特异性条带。薄层扫描显示,突变体酶GIG138P和GIG138P-G247D分别约占可溶性蛋白的19%和22%。Western杂交进一步证实GIG138P和GIG138P-G247D在变铅青链霉菌TK54中获得了表达。  相似文献   

5.
A comparison of the primary structures among psychrophilic, mesophilic, and thermophilic subtilases revealed that the turn between the β8 and β9 strands (β8-β9 turn, BPN' numbering) of psychrophilic subtilases are more flexible than those of their mesophilic and thermophilic counterparts. To investigate the relationship between structure of this turn and enzyme activity as well as thermostability of mesophilic subtilisin Carlsberg (sC), we analyzed 6 mutants of sC with a single, double, or triple Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn. Among the single Gly substitutions, the P210G substitution most significantly (1.5-fold) increased the specific activity on N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (AAPF) substrate and 12-fold decreased the thermostability. All mutants tested showed the increased k(cat) for the AAPF substrate and reduced thermostability compared with the wild-type sC. The k(cat) values of the P210G, P210G/T211G, and P210G/T211G/N212G mutants were 1.5-, 1.7-, and 1.8-fold higher than that of the wild-type sC. There were significant positive correlations between k(cat) and thermal inactivation rates as well as k(cat) and K(m) of the wild-type and mutants. These results demonstrate that the structure of β8-β9 turn, despite its distance from the active site, has significant effects on the catalytic rate and thermostability of sC through a global network of intramolecular interactions and suggest that the lack of flexibility of this turn stabilizes the wild-type sC against thermal inactivation in compensation for some loss of catalytic activity.  相似文献   

6.
The alpha-galactosidase (AGA) from Bifidobacterium adolescentis DSM 20083 has a high transglycosylation activity. The optimal conditions for this activity are pH 8, and 37 degrees C. At high melibiose concentration (600 mM), approximately 64% of the enzyme-substrate encounters resulted in transglycosylation. Examination of the acceptor specificity showed that AGA required a hydroxyl group at C-6 for transglycosylation. Pentoses, hexuronic acids, deoxyhexoses, and alditols did not serve as acceptor molecules. Disaccharides were found to be good acceptors. A putative 3D-structure of the catalytic site of AGA was obtained by homology modeling. Based on this structure and amino acid sequence alignments, site-directed mutagenesis was performed to increase the transglycosylation efficiency of the enzyme, which resulted in four positive mutants. The positive single mutations were combined, resulting in six double mutants. The mutant H497M had an increase in transglycosylation of 16%, whereas most of the single mutations showed an increase of 2%-5% compared to the wild-type AGA. The double mutants G382C-Y500L, and H497M-Y500L had an increase in transglycosylation activity of 10%-16%, compared to the wild-type enzyme, whereas the increase for the other double mutants was low (4%-7%). The results show that with a single mutation (H497M) the transglycosylation efficiency can be increased from 64% to 75% of all enzyme-substrate encounters. Combining successful single mutants in double mutations did not necessarily result in an extra increase in transglycosylation efficiency. The donor and acceptor specificity did not change in the mutants, whereas the thermostability of the mutants with G382C decreased drastically.  相似文献   

7.
Thermostability is an important property of industrially significant hydrolytic enzymes: understanding the structural basis for this attribute will underpin the future biotechnological exploitation of these biocatalysts. The Cellvibrio family 10 (GH10) xylanases display considerable sequence identity but exhibit significant differences in thermostability; thus, these enzymes represent excellent models to examine the structural basis for the variation in stability displayed by these glycoside hydrolases. Here, we have subjected the intracellular Cellvibrio mixtus xylanase CmXyn10B to forced protein evolution. Error-prone PCR and selection identified a double mutant, A334V/G348D, which confers an increase in thermostability. The mutant has a Tm 8 degrees C higher than the wild-type enzyme and, at 55 degrees C, the first-order rate constant for thermal inactivation of A334V/G348D is 4.1 x 10(-4) min(-1), compared to a value of 1.6 x 10(-1) min(-1) for the wild-type enzyme. The introduction of the N to C-terminal disulphide bridge into A334V/G348D, which increases the thermostability of wild-type CmXyn10B, conferred a further approximately 2 degrees C increase in the Tm of the double mutant. The crystal structure of A334V/G348D showed that the introduction of Val334 fills a cavity within the hydrophobic core of the xylanase, increasing the number of van der Waals interactions with the surrounding aromatic residues, while O(delta1) of Asp348 makes an additional hydrogen bond with the amide of Gly344 and O(delta2) interacts with the arabinofuranose side-chain of the xylose moiety at the -2 subsite. To investigate the importance of xylan decorations in productive substrate binding, the activity of wild-type CmXyn10B, the mutant A334V/G348D, and several other GH10 xylanases against xylotriose and xylotriose containing an arabinofuranose side-chain (AX3) was assessed. The enzymes were more active against AX3 than xylotriose, providing evidence that the arabinose side-chain makes a generic contribution to substrate recognition by GH10 xylanases.  相似文献   

8.
Protein engineering is commonly used to improve the robustness of enzymes for activity and stability at high temperatures. In this study, we identified four residues expected to affect the thermostability of Streptomyces sp. strain S9 xylanase XynAS9 through multiple-sequence analysis (MSA) and molecular dynamic simulations (MDS). Site-directed mutagenesis was employed to construct five mutants by replacing these residues with proline or glutamic acid (V81P, G82E, V81P/G82E, D185P/S186E, and V81P/G82E/D185P/S186E), and the mutant and wild-type enzymes were expressed in Pichia pastoris. Compared to the wild-type XynAS9, all five mutant enzymes showed improved thermal properties. The activity and stability assays, including circular dichroism and differential scanning calorimetry, showed that the mutations at positions 81 and 82 increased the thermal performance more than the mutations at positions 185 and 186. The mutants with combined substitutions (V81P/G82E and V81P/G82E/D185P/S186E) showed the most pronounced shifts in temperature optima, about 17°C upward, and their half-lives for thermal inactivation at 70°C and melting temperatures were increased by >9 times and approximately 7.0°C, respectively. The mutation combination of V81P and G82E in adjacent positions more than doubled the effect of single mutations. Both mutation regions were at the end of long secondary-structure elements and probably rigidified the local structure. MDS indicated that a long loop region after positions 81 and 82 located at the end of the inner β-barrel was prone to unfold. The rigidified main chain and filling of a groove by the mutations on the bottom of the active site canyon may stabilize the mutants and thus improve their thermostability.  相似文献   

9.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

10.
The structurally homologous mononuclear iron and manganese superoxide dismutases (FeSOD and MnSOD, respectively) contain a highly conserved glutamine residue in the active site which projects toward the active-site metal centre and participates in an extensive hydrogen bonding network. The position of this residue is different for each SOD isoenzyme (Q69 in FeSOD and Q146 in MnSOD of Escherichia coli). Although site-directed mutant enzymes lacking this glutamine residue (FeSOD[Q69G] and MnSOD[Q146A]) demonstrated a higher degree of selectivity for their respective metal, they showed little or no activity compared with wild types. FeSOD double mutants (FeSOD[Q69G/A141Q]), which mimic the glutamine position in MnSOD, elicited 25% the activity of wild-type FeSOD while the activity of the corresponding MnSOD double mutant (MnSOD[G77Q/Q146A]) increased to 150% (relative to wild-type MnSOD). Both double mutants showed reduced selectivity toward their metal. Differences exhibited in the thermostability of SOD activity was most obvious in the mutants that contained two glutamine residues (FeSOD[A141Q] and MnSOD[G77Q]), where the MnSOD mutant was thermostable and the FeSOD mutant was thermolabile. Significantly, the MnSOD double mutant exhibited a thermal-inactivation profile similar to that of wild-type FeSOD while that of the FeSOD double mutant was similar to wild-type MnSOD. We conclude therefore that the position of this glutamine residue contributes to metal selectivity and is responsible for some of the different physicochemical properties of these SODs, and in particular their characteristic thermostability.  相似文献   

11.
用双引物法对GI基因进行体外定点突变,构建了突变体Q20L和G247D。含突变基因的重组表达质粒pTKD-GIQ20L及pTKDGIG247D在E.coli K38菌株中表达。纯化的突变酶与野生型酶相比:(1) GIQ20L的最适反应温度下降5℃,热稳定性为野生型酶的78%,对底物的亲和性增强;(2) GIG247D的酶活提高约33%,最适pH下降0.6个单位,但热稳定性降低。初步分析认为,Gln 20位于α0~α1螺旋之间,其亲水侧链被Leu的疏水侧链取代后,分子表面增强的疏水作用,反而不利于蛋白质的稳定,使GIQ20L的热稳定性降低。Gly247是酶活性中心β折叠(242~247aa)的最后一个残基。引入电负性极强的Asp后,可能改变分子的静电场分布,影响了活性部位的电荷传递过程,使GIG247D酶活提高。引入的电荷,可能改变活性中心可解离基团的pKa,使其最适pH下降。另外Asp247的侧链在周围空间结构中显得过于拥挤,易与其他侧链产生排斥,由此影响到β-折叠的稳定性,接近亚基结合面的Asp247,可能进一步影响到亚基间相互作用的稳定性,最终导致酶热稳定性的降低。GI酶活和最适pH的改善更利于工业生产。  相似文献   

12.
Tang SY  Le QT  Shim JH  Yang SJ  Auh JH  Park C  Park KH 《The FEBS journal》2006,273(14):3335-3345
DNA shuffling was used to improve the thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2. Two highly thermostable mutants, III-1 and III-2, were generated after three rounds of shuffling and recombination of mutations. Their optimal reaction temperatures were all 80 degrees C, which was 10 degrees C higher than that of the wild-type. The mutant enzyme III-1 carried seven mutations: N147D, F195L, N263S, D311G, A344V, F397S, and N508D. The half-life of III-1 was about 20 times greater than that of the wild-type at 78 degrees C. The mutant enzyme III-2 carried M375T in addition to the mutations in III-1, which was responsible for the decrease in specific activity. The half-life of III-2 was 568 min while that of the wild-type was < 1 min at 80 degrees C. The melting temperatures of III-1 and III-2, as determined by differential scanning calorimetry, increased by 6.1 degrees C and 11.4 degrees C, respectively. Hydrogen bonding, hydrophobic interaction, electrostatic interaction, proper packing, and deamidation were predicted as the mechanisms for the enhancement of thermostability in the enzymes with the mutations.  相似文献   

13.
Some of the conserved residues at subunit interfaces of thermophilic xylose isomerases (XIs) were selected by means of both multiple sequences alignment and subunit interactions analysis of XIs, and then were mutated for improving the activity of Thermus thermophilus xylose isomerase (TtXI). By site-directed mutagenesis, single (D375G, K355A, V144A) and double (D375G/V385A) mutations were introduced into TtXI containing a N91D mutation site, namely, TtXI-N91D. It was shown that the specific activities of mutants D375G, K355A and V144A were remarkably increased over a temperature range of 40–90 °C at pH 7.0. The activities of mutants D375G/V385A, D375G, V144A and K355A were 1.14-, 1.62-, 2.49- and 3.02-fold greater than that of TtXI-N91D at 75 °C, respectively. Over the pH range of 5.0–9.0, the activities of mutants D375G, K355A and V144A were greater than that of TtXI-N91D at 60 °C. The thermostability of all mutants, except K355A, was lower than that of TtXI-N91D. The results suggest that the activity of TtXI could be engineered by site-directed mutagenesis on the conserved residues at subunit interfaces. This method could be employed for improving the activity of other thermophilic XIs.  相似文献   

14.
A comparison of the primary structures among psychrophilic, mesophilic, and thermophilic subtilases revealed that the turn between the β8 and β9 strands (β8-β9 turn, BPN′ numbering) of psychrophilic subtilases are more flexible than those of their mesophilic and thermophilic counterparts. To investigate the relationship between structure of this turn and enzyme activity as well as thermostability of mesophilic subtilisin Carlsberg (sC), we analyzed 6 mutants of sC with a single, double, or triple Gly or Ala substitutions for Pro210Thr211Asn212 at the β8-β9 turn. Among the single Gly substitutions, the P210G substitution most significantly (1.5-fold) increased the specific activity on N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (AAPF) substrate and 12-fold decreased the thermostability. All mutants tested showed the increased kcat for the AAPF substrate and reduced thermostability compared with the wild-type sC. The kcat values of the P210G, P210G/T211G, and P210G/T211G/N212G mutants were 1.5-, 1.7-, and 1.8-fold higher than that of the wild-type sC. There were significant positive correlations between kcat and thermal inactivation rates as well as kcat and Km of the wild-type and mutants. These results demonstrate that the structure of β8-β9 turn, despite its distance from the active site, has significant effects on the catalytic rate and thermostability of sC through a global network of intramolecular interactions and suggest that the lack of flexibility of this turn stabilizes the wild-type sC against thermal inactivation in compensation for some loss of catalytic activity.  相似文献   

15.
Fifteen mutant genes in six loop residues and eight mutant genes in five conserved noncatalytic active site residues of Thermobifida fusca Cel6B were constructed, cloned and expressed in Escherichia coli or Streptomyces lividans. The mutant enzymes were assayed for catalytic activity on carboxymethyl cellulose (CMC), swollen cellulose (SC), filter paper (FP), and bacterial microcrystalline cellulose (BMCC) as well as cellotetraose, cellopentaose, and 2, 4-dinitrophenyl-beta-D-cellobioside. They were also assayed for ligand binding, enzyme processivity, thermostability, and cellobiose feedback inhibition. Two double Cys mutations that formed disulfide bonds across two tunnel forming loops were found to significantly weaken binding to ligands, lower all activities, and processivity, demonstrating that the movement of these loops is important but not essential for Cel6B function. Two single mutant enzymes, G234S and G284P, had higher activity on SC and FP, and the double mutant enzyme had threefold and twofold higher activity on these substrates, respectively. However, synergism with endocellulase T. fusca Cel5A was not increased with these mutant enzymes. All mutant enzymes with lower activity on filter paper, BMCC, and SC had lower processivity. This trend was not true for CMC, suggesting that processivity in Cel6B is a key factor in the hydrolysis of insoluble and crystalline cellulose. Three mutations (E495D, H326A and W329C) located near putative glycosyl substrate subsites -2, +1 and +2, were found to significantly increase resistance to cellobiose feedback inhibition. Both the A229V and L230C mutations specifically decreased activity on BMCC, suggesting that BMCC hydrolysis has a different rate limiting step than the other substrates. Most of the mutant enzymes had reduced thermostability although Cel6B G234S maintained wild-type thermostability. The properties of the different mutant enzymes provide insight into the catalytic mechanism of Cel6B.  相似文献   

16.
Site-directed mutagenesis was carried out on Bacillus pumilus chloramphenicol acetyltransferase (CAT-86) to determine the effects of substitution at a conserved hydrophobic pocket identified earlier as important for thermostability. Mutations were introduced that would substitute residues at consensus positions 33, 191 and 203 in the enzyme, both individually and in combination. Two mutants, SDM1 (CAT-86 Y33F, A203V) and SDM5 (CAT-86 A203I), were more thermostable than wild-type and two mutants, SDM4 (CAT-86 I191V) and SDM7 (CAT-86 A203G), were less stable. Reconstruction of the residues of this hydrophobic pocket to that of a more thermostable CAT-R387 enzyme pocket (as a Y33F, I191V, A203V triple mutant) increased the thermostability of the enzyme above the wild-type, but its stability was less than that of SDM1 and SDM5. The K(m) values of the mutant enzymes for chloramphenicol and acetyl-CoA were essentially unaltered (in the ranges 15-30 and 26-35 microM respectively) and the specific activity of purified enzyme was in the range 270-710 units/mg protein. The possible effects of the amino acid substitutions on the CAT-86 structure were determined by homology modelling. A reduction in conformational strain and optimized hydrophobic interactions are predicted to be responsible for the increased thermostability of the SDM1 and SDM5 mutants.  相似文献   

17.
In this paper, the construction of 3D model structure of xylose dehydrogenase (XDH) by using homology modeling to guide the rational design of the enzyme for improving thermostability was reported. Three XDH mutants of NA-1 (+249L), NA-2 (G149P) and NA-3 (+249L/G149P) were designed and displayed on the surface of bacteria. Among them, bacteria displaying NA-1 (NA-1-bacteria) exhibited superior thermostability without compromising its activity and substrate specificity in comparison with its wild-type counterpart. NA-1-bacteria retained its original activity after incubation at room temperature for one-month with the half-life of 9.8 days at 40 °C. Finally, the NA-1-bacteria were applied to construct xylose/O2 based biofuel cell with good performance including enhanced operational stability. Thus, the approach described here could be explored for engineering of other enzymes for improving certain characters without three-dimensional structure identified by experimental methods.  相似文献   

18.
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.  相似文献   

19.
The role of two amino acid residues linked to the two catalytic histidines His54 and His220 in kinetics and physicochemical properties of the Streptomyces sp. SK glucose isomerase (SKGI) was investigated by site-directed mutagenesis and molecular modeling. Two single mutations, F53L and G219D, and a double mutation F53L/G219D was introduced into the xylA SKGI gene. The F53L mutation increases the thermostability and the catalytic efficiency and also slightly shifts the optimum pH from 6.5 to 7, but displays a profile being similar to that of the wild-type enzyme concerning the effect of various metal ions. The G219D mutant is resistant to calcium inhibition retaining about 80% of its residual activity in 10 mM Ca2+ instead of 10% for the wild-type. This variant is activated by Mn2+ ions, but not Co2+, as seen for the wild-type enzyme. It does not require the latter for its thermostability, but has its half-life time displaced from 50 to 20 min at 85°C. The double mutation F53L/G219D restores the thermostability as seen for the wild-type enzyme while maintaining the resistance to the calcium inhibition. Molecular modeling suggests that the increase in thermostability is due to new hydrophobic interactions stabilizing α2 helix and that the resistance to calcium inhibition is a result of narrowing the binding site of catalytic ion.  相似文献   

20.
A series of mutants were constructed to investigate the amino-acid residues responsible for the synergism in substrate binding of arginine kinase (AK). AK contains a pair of highly conserved amino acids (Y75 and P272) that form a hydrogen bond. In the locust (Locusta migratoria manilensis) AK, mutants in two highly conserved sites can cause pronounced loss of activity, conformational changes and distinct substrate synergism alteration. The Y75F and Y75D mutants showed strong synergism (Kd/Km=6.2-13.4), while in single mutants, P272G and P272R, and a double mutant, Y75F/P272G, the synergism was almost completely lost (Kd/Km=1.1-1.4). Another double mutant, Y75D/P272R, had characteristics similar to those of the wild-type enzyme. All these results suggest that the amino-acid residues 75 and 272 play an important role in regulating the synergism in substrate binding of AK. Fluorescence spectra showed that all mutants except Y75D/P272R displayed a red shift to different degrees. All the results provided direct evidence that there is a subtle relationship between the synergism in substrate binding and the conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号