首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co‐enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD‐dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP‐dependent MDH isoform. The NADP‐MDH as part of the ‘light malate valve’ plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post‐translational redox‐modification mediated via the ferredoxin‐thioredoxin system and fine control via the NADP+/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD‐MDH (‘dark malate valve’) is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD‐MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD‐MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.  相似文献   

2.
A simple in situ model of alamethicin-permeabilized isolated rat liver mitochondria was used to investigate the channeling of NADH between mitochondrial malate dehydrogenase (MDH) and NADH:ubiquinone oxidoreductase (complex I). Alamethicin-induced pores in the mitochondrial inner membrane allow effective transport of low molecular mass components such as NAD+/NADH but not soluble proteins. Permeabilized mitochondria demonstrate high rates of respiration in the presence of malate/glutamate and NAD+ due to coupled reaction between MDH and complex I. In the presence of pyruvate and lactate dehydrogenase, an extramitochondrial competitive NADH utilizing system, respiration of permeabilized mitochondria with malate/glutamate and NAD+ was completely abolished. These data are in agreement with the free diffusion of NADH and do not support the suggestion of direct channeling of NADH from MDH to complex I.  相似文献   

3.
Chloroplasts isolated from spinach (Spinacia oleracea L.) leaves and green sweet-pepper (Capsicum annuum L. var. grossum (L.) Sendt.) fruits contain NADP-dependent malate dehydrogenase (MDH; EC 1.1.1.82) and the bispecific NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13). The NADP-dependent MDH and GAPDH are activated in the light, and inactive in the dark. We found that chloroplasts possess additional NAD-dependent MDH activity which is, like the NAD-dependent GAPDH activity, not influenced by light. In heterotrophic chromoplasts from red sweet-pepper fruits, the NADP-dependent MDH and the NAD(P)-GAPDH isoenzymes disappear during the developmental transition and only NAD-specific isoforms are found. Spinach chloroplasts contain both NAD/H and NADP/H at significant concentrations. Measurements of the pyridine dinucleotide redox states, performed under dark and various light conditions, indicate that NAD(H) is not involved in electron flow in the light. To analyze the contribution of NAD(H)-dependent reactions during dark metabolism, plastids from spinach leaves or green and red sweet-pepper fruits were incubated with dihydroxyacetone phosphate (DHAP). Exogenously added DHAP was oxidized into 3-phosphoglycerate by all types of plastids only in the presence of oxaloacetate, but not with nitrite or in the absence of added electron acceptors. We conclude that the NAD-dependent activity of GAPDH is essential in the dark to produce the ATP required for starch metabolism; excess electrons produced during triose-phosphate oxidation can selectively be used by NAD-MDH to form malate. Thus NADPH produced independently in the oxidative pentose-phosphate pathway will remain available for reductive processes inside the plastids. Received: 2 July 1997 / Accepted: 20 October 1997  相似文献   

4.
1. A biochemical comparison was made among cytoplasmic malate dehydrogenase allozymic variants from Drosophila melanogaster. Experiments were carried out on enzyme extracted from six different genotypes: three homozygotes and their respective heterozygotes. 2. The allozyme forms (MDH A, MDH B, MDH C) were indistinguishable in terms of NAD and L-malate optima, while they are distinguishable in terms of NADH and OAA saturation conditions. Activities were inhibited at concentrations greater than 0.36 and 0.40 mM NADH for BB and AA, CC, respectively, while in relation to OAA inhibition was observed at concentrations higher than 3 or 6 mM for the AA, CC and BB, respectively. 3. differences among genotypes were also observed in thermal stability: Km values for OAA, L-malate, NADH and NAD: and pG optima. 4. A simple method is presented for the separation of the cytoplasmic from the mitochondrial malate dehydrogenase.  相似文献   

5.
NADH is central to the functioning of mitochondrial respiration. It is produced by enzymes in, or associated with, the tricarboxylic acid cycle in the matrix, and it is oxidized by two respiratory chain enzymes in the inner membrane, the rotenone-sensitive complex I and the rotenone-insensitive internal NADH dehydrogenase (NDin). A simplified kinetic model for NADH turnover in the matrix of plant mitochondria is presented. Only the two main NADH-producing enzymes, NAD-malate dehydrogenase [EC 1.1.1.37] (MDH) and NAD-malic enzyme [EC 1.1.1.39] (ME), are considered. This model reproduces the complex behaviour of malate oxidation by isolated mitochondria in response to additions of ADP (state 3/state 4), NAD+ and/or rotenone, as well as to changes in pH. It is found that MDH always operates at or close to equilibrium. Changes in the activity of complex I, NDin, or ME are predicted to cause clear changes in the pattern of malate oxidation. In general, the model predicts high sensitivity to changes in the ME activity. In contrast, MDH activity can be reduced 100-fold without detectable changes in malate oxidation. It is demonstrated that it is not the high activity, but the equilibrium properties of MDH that are important for the redox-buffering function of MDH in the mitochondrial matrix. Binding of NAD+ and NADH in the matrix reduces the concentrations of free NAD+ and NADH, depending on the concentration of binding sites and the binding strength. On the basis of the modelling results it is estimated that a significant proportion of the mitochondrial NAD is bound.  相似文献   

6.
7.
An investigation was made of the respiratory properties and the role of the mitochondria isolated from one phosphoenolpyruvate carboxykinase (PCK)-CAM plant Ananas comosus (pineapple) in malate metabolism during CAM phase III. Pineapple mitochondria showed very high malate dehydrogenase (MDH), and low malic enzyme (ME) and glutamate-oxaloacetate transaminase (GOT) activities. The mitochondria readily oxidized succinate and NADH with high rates and coupling, while they only oxidized NADPH in the presence of Ca(2+). Pineapple mitochondria oxidized malate with low rates under most assay conditions, despite increasing malate concentrations, optimizing pH, providing cofactors such as coenzyme A, thiamine pyrophosphate, and NAD(+), and supplying individually external glutamate or GOT. However, providing glutamate and GOT simultaneously strongly increased the rates of malate oxidation. The OAA easily permeated the mitochondrial membranes to import into or export out of pineapple mitochondria during malate oxidation, but the mitochondria did not consume external Asp or alpha-KG. These results suggest that OAA played a significant role in the mitochondrial malate metabolism of pineapple, in which malate was mainly oxidized by active mMDH to produce OAA which could be exported outside the mitochondria via a malate-OAA shuttle. Cytosolic GOT then consumed OAA by transamination in the presence of glutamate, leading to a large increase in respiration rates. The malate-OAA shuttle might operate as a supporting system for decarboxylation in phase III of PCK-CAM pineapple. This shuttle system may be important in pineapple to provide a source of energy and substrate OAA for cytosolic PCK activity during the day when cytosolic OAA and ATP was limited for the overall decarboxylation process.  相似文献   

8.
Equilibrium, thermochemical, and time-resolved fluorescence measurements have been carried out in order to compare pig heart lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (MDH). The differences in the thermodynamic parameters for binding of NADH and NAD+ show the same pattern for both enzymes. The stronger binding of NADH is entropy-based, which can be understood as reflecting electrostatic interactions. The tryptophan fluorescence of MDH and LDH differ for the free enzymes and in quenching by NADH. The differences can be accounted for in terms of a single long-lived tryptophan residue present in LDH and not in MDH.  相似文献   

9.
Palmitylcarnitine oxidation by isolated liver mitochondria has been used to investigate the interaction of fatty acid oxidation with malate, glutamate, succinate, and the malate-aspartate shuttle. Mitochondria preincubated with fluorocitrate were added to a medium containing 2mM ATP and ATPase. This system, characterized by a high energy change, allowed titration of respiration to any desired rate between States 4 and 3 (Chance, B., and Williams, G. R. (1956) Adv. Enzymol. Relat. Areas Mol. Biol. 17, 65-134). When respiration (reference, with palmitylcarnitine and malate as substrates) was set at 75% of State 3, the oxidation of palmitylcarnitine was limited by acetoacetate formation. The addition of malate or glutamate approximately doubled the rate of beta oxidation. Malate circumvented this limitation by citrate formation, but the effect of glutamate apparently was due to enhancement of the capacity for ketogenesis. The rate of beta oxidation was curtailed when malate and glutamate were both present. This curtailment was more pronounced when the malate-aspartate shuttle was fully reconstituted. Among the oxidizable substrates examined, succinate was most effective in inhibiting palmitylcarnitine oxidation. Mitochondrial NADH/NAD+ ratios were correlated positively with suppression of beta oxidation. The degree of suppression of beta oxidation by the malate-aspartate shuttle (NADH oxidation) or by succinate oxidation was dependent on the respiratory state. Both substrates extensively reduced mitochondrial NAD+ and markedly suppressed beta oxidation as respiration approached State 4. Calculations of the rates of flux of hydrogen equivalents through beta oxidation show that the suppression of beta oxidation by glutamate or by the malate-aspartate shuttle is accounted for by increased flux of reducing equivalents through mitochondrial malic dehydrogenase. This increased Flux is accompanied by an increase in the steady state NADH/NAD+ ratio and a marked decrease in the synthesis of citrate. The alpha-glycerophosphate shuttle was reconstituted with mitochondria isolated from rats treated with L-thyroxine. This shuttle was about equal to the reconstructed malate-aspartate shuttle in supression of palmitylcarnitine oxidation. This interaction could not be demonstrated in euthyroid animals owing to the low activity of the mitochondrial alpha-glycerol phosphate dehydrogenase. It is concluded that beta oxidation can be regulated by the NADH/NAD+ ratio. The observed stimulation of flux through malate dehydrogenase both by glutamate and by the malate-aspartate shuttle results in an increased steady state NADH/NAD+ ratio, and is linked to a stoichiometric outward transport of aspartate. We suggest, therefore, that some of the reducing pressure exerted by the malate-aspartate shuttle and by glutamate plus malate is provided through the energy-linked, electrogenic transport of aspartate out of the mitochondria. These results are discussed with respect to the mechanism of the genesis of ethanol-induced fatty liver.  相似文献   

10.
The rates of both forward and reverse electron transfer in phosphorylating submitochondrial particles from bovine heart can be controlled by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi]) where deltaG'o is the standard free energy of ATP hydrolysis. Studies of the effects of deltaGp on NADH respiration and the reduction of NAD+ by succinate show that increasing values of deltaGp cause an inhibition of forward electron transfer and a stimulation of reverse electron transfer. Between deltaGp values of 7.6 and 13.0 kcal/mol the rate of NADH respiration decreased 3-fold and the rate of NAD+ reduction by succinate increased 3-fold. Indirect phosphorylation potential titration experiments as well as direct chemical measurements indicate that steady state levels of ATP, ADP, and Pi are established during NADH respiration which correspond to a deltaGp equal to 10.7 to 11.4 kcal/mol.  相似文献   

11.
《BBA》2022,1863(3):148532
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the ‘respirasome free’ complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.  相似文献   

12.
In response to exercise, the heart increases its metabolic rate severalfold while maintaining energy species (e.g., ATP, ADP, and Pi) concentrations constant; however, the mechanisms that regulate this response are unclear. Limited experimental studies show that the classic regulatory species NADH and NAD+ are also maintained nearly constant with increased cardiac power generation, but current measurements lump the cytosol and mitochondria and do not provide dynamic information during the early phase of the transition from low to high work states. In the present study, we modified our previously published computational model of cardiac metabolism by incorporating parallel activation of ATP hydrolysis, glycolysis, mitochondrial dehydrogenases, the electron transport chain, and oxidative phosphorylation, and simulated the metabolic responses of the heart to an abrupt increase in energy expenditure. Model simulations showed that myocardial oxygen consumption, pyruvate oxidation, fatty acids oxidation, and ATP generation were all increased with increased energy expenditure, whereas ATP and ADP remained constant. Both cytosolic and mitochondrial NADH/NAD+ increased during the first minutes (by 40% and 20%, respectively) and returned to the resting values by 10-15 min. Furthermore, model simulations showed that an altered substrate selection, induced by either elevated arterial lactate or diabetic conditions, affected cytosolic NADH/NAD+ but had minimal effects on the mitochondrial NADH/NAD+, myocardial oxygen consumption, or ATP production. In conclusion, these results support the concept of parallel activation of metabolic processes generating reducing equivalents during an abrupt increase in cardiac energy expenditure and suggest there is a transient increase in the mitochondrial NADH/NAD+ ratio that is independent of substrate supply.  相似文献   

13.
Kalanchoë pinnata mitochondria readily oxidized succinate, malate, NADH, and NADPH at high rates and coupling. The highest respiration rates usually were observed in the presence of succinate. The high rate of malate oxidation was observed at pH 6.8 with thiamine pyrophosphate where both malic enzyme (ME) and pyruvate dehydrogenase were activated. In CAM phase III of K. pinnata mitochondria, both ME and malate dehydrogenase (MDH) simultaneously contributed to metabolism of malate. However, ME played a main function: malate was oxidized via ME to produce pyruvate and CO2 rather than via MDH to produce oxalacetate (OAA). Cooperative oxidation of two or three substrates was accompanied with the dramatic increase in the total respiration rates. Our results showed that the alternative (Alt) pathway was more active in malate oxidation at pH 6.8 with CoA and NAD+ where ME operated and was stimulated, indicating that both ME and Alt pathway were related to malate decarboxylation during the light. In K. pinnata mitochondria, NADH and NADPH oxidations were more sensitive with KCN than that with succinate and malate oxidations, suggesting that these oxidations were engaged to cytochrome pathway rather than to Alt pathway and these capacities would be desirable to supply enough energy for cytosol pyruvate orthophosphate dikinase activity.  相似文献   

14.
Summary. Spinach leaves were used to extract isoforms of NAD-dependent malate dehydrogenase (NAD-MDH) (EC 1.1.1.37), either soluble or bound to microsomal, plasma, or chloroplast envelope membranes. All fractions were subjected to isoelectric focusing analysis, which showed that purified chloroplast envelopes contain an NAD-MDH isoform tightly bound to the membranes, since treatment with 0.5 or 1% Triton X-100 was not able to release the enzyme from the envelopes. In contrast, plasma membranes released an isoform with a pI of 3.5 following treatment with 0.5% Triton X-100. The most abundant soluble leaf isoform had a pI of 9, while the chloroplast stroma contained an isoform with a pI of 5.3. Kinetic analysis of oxaloacetate (OAA)-dependent NADH oxidation in different fractions gave different K m values for both substrates, the envelope- and plasma membrane-bound NAD-MDH exhibiting the highest affinities for OAA. Leaf plasma membrane-bound MDH exhibited a high capacity for both reaction directions (malate oxidation and OAA reduction), while the two chloroplast isoforms (stromal and envelope-bound) preferentially reduced OAA. Our results indicate that the chloroplast envelope contains a specifically attached NAD-MDH isoform that could provide direct coupling between chloroplast and cytosol adenylate pools. Correspondence: T. Cvetić, Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia.  相似文献   

15.
This review focuses on the energy metabolism during pollen maturation and tube growth and updates current knowledge. Pollen tube growth is essential for male reproductive success and extremely fast. Therefore, pollen development and tube growth are high energy-demanding processes. During the last years, various publications (including research papers and reviews) emphasize the importance of mitochondrial respiration and fermentation during male gametogenesis and pollen tube elongation. These pathways obviously contribute to satisfy the high energy demand, and there are many studies which suggest that respiration and fermentation are the only pathways to generate the needed energy. Here, we review data which show for the first time that in addition plastidial glycolysis and the balancing of the ATP/NAD(P)H ratio (by malate valves and NAD+ biosynthesis) contribute to satisfy the energy demand during pollen development. Although the importance of energy generation by plastids was discounted during the last years (possibly due to the controversial opinion about their existence in pollen grains and pollen tubes), the available data underline their prime role during pollen maturation and tube growth.  相似文献   

16.
In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis.Reduction-oxidation (redox) reactions play pivotal roles for most metabolic processes and occur in all cellular compartments. The origin of all reducing power in plants is the chloroplast thylakoid membrane system, where light-driven photosynthetic electron transport leads to the coupled formation of ATP and the reducing equivalent NADPH (Dietz and Pfannschmidt, 2011). Sudden changes in light intensity and withdrawal of ATP and NADPH for biosynthetic processes in varying amounts can potentially disturb the ATP:NADPH ratio. Maintaining this ratio within certain limits, however, is crucial for plant metabolism, because it avoids the accumulation of excess electrons and the production of cytotoxic reactive oxygen species and allows for the continued production of ATP (Apel and Hirt, 2004; Logan, 2006; Scheibe and Dietz, 2012). Accordingly, plants have several mechanisms to dissipate excess electrons, avoid damage to cellular components, and maintain redox homeostasis. These mechanisms include nonphotochemical energy quenching, chlororespiration, cyclic electron transport, and the Mehler reaction (Scheibe et al., 2005).Reducing equivalents in the form of dedicated electron carriers or reduced cofactors (e.g. ferredoxin and NADH) are not generally transported directly across membranes; however, they can be shuttled indirectly as malate in exchange for oxaloacetic acid (OAA). This redox-poising mechanism is known as the malate valve in illuminated plastids or more generally, the malate-OAA shuttle (Heber, 1974; Scheibe, 2004; Taniguchi and Miyake, 2012). The key enzyme of the malate-OAA shuttle is malate dehydrogenase (MDH), which catalyses the reversible interconversion of malate and OAA. Isoforms of MDH are present in various cell compartments (Gietl, 1992), and each isoform is specific to either cosubstrate NAD (NAD-MDH; EC 1.1.1.37) or NADP (NADP-MDH; EC 1.1.1.82). The Arabidopsis genome encodes eight putative NAD-MDH isoforms: two isoforms are peroxisomal MDH (PMDH; PMDH1 and PMDH2; Pracharoenwattana et al., 2007; Eubel et al., 2008), two isoforms are mitochondrial MDH (MMDH; MMDH1 and MMDH2; Millar et al., 2001; Lee et al., 2008; Tomaz et al., 2010), and one isoform is plastidial MDH (plastid-localized NAD-dependent MDH [pdNAD-MDH]; Berkemeyer et al., 1998). The remaining three isoforms have no detectable target sequence and are thought to be cytosolic MDH (CMDH; CMDH1, CMDH2, and CMDH3). The Arabidopsis genome also encodes an additional NADP-dependent isoform of MDH, which is localized to the plastid (Hebbelmann et al., 2012).The physiological role of the different isoforms depends on the subcellular localization and the different metabolic pathways occurring there. For instance, MMDH was reported to be involved in two processes that are at least partly mitochondrial: leaf respiration and photorespiration (Tomaz et al., 2010). An MMDH null mutant (mmdh1 mmdh2) was slow growing and showed elevated leaf respiration in the dark and the light, although photosynthetic capacity was not affected. Tomaz et al. (2010) proposed that MMDH uses NADH to reduce OAA to malate, which is then shuttled to the cytosol, rather than generate NADH to fuel mitochondrial respiration (Tomaz et al., 2010). PMDH might serve at least two different functions. First, during fatty acid β-oxidation, which generates NADH, PMDH is proposed to regenerate the electron acceptor NAD by reducing OAA to malate, which is then shuttled to the cytosol in exchange for OAA (Pracharoenwattana et al., 2007). Second, PMDH is thought to generate NADH during photorespiration by oxidation of malate imported from the cytosol (Reumann and Weber, 2006; Cousins et al., 2008). Arabidopsis mutants lacking PMDH (pmdh1 pmdh2) are severely impaired in β-oxidation, and seedling establishment is strongly impaired and dependent on the supply of exogenous sugar (Pracharoenwattana et al., 2007), a phenotype characteristic of β-oxidation mutants (Pinfield-Wells et al., 2005; Baker et al., 2006). However, after transfer of established pmdh1 pmdh2 seedlings to compost, they grew only slightly slower than wild-type plants (Pracharoenwattana et al., 2007).Until recently, genetic evidence for the roles of the plastidial MDH isoforms was scarce. In most C4 plants, NADP-MDH is directly involved in CO2 fixation, catalyzing the formation of the stable CO2 carrier malate from the primary CO2 fixation product OAA (Scheibe, 1987). However, in C3 plants, NADP-MDH has long been proposed to have its major function in the malate valve, leading to shuttling of reducing power (as malate) from the chloroplast to the cytosol during the day and thereby regenerating the electron acceptor NADP inside the chloroplasts (Heber, 1974; Lance and Rustin, 1984; Scheibe, 1987). NADP-MDH is redox activated by thioredoxins in the light and essentially inactive in the dark (Scheibe, 1987; Buchanan and Balmer, 2005). The widely accepted belief that chloroplasts only possess this one strictly light-/redox-activated NADP-MDH temporarily led to the conclusion that the malate valve only works in illuminated chloroplasts (Berkemeyer et al., 1998; Scheibe, 2004). However, a recent study showed that Arabidopsis plants lacking NADP-MDH (nadp-mdh) were indistinguishable from wild-type plants, even under conditions that are supposed to provoke the accumulation of excess electrons and the production of cytotoxic reactive oxygen species (high light and short days; Hebbelmann et al., 2012). This finding indicates that NADP-MDH is not crucial for providing electron acceptors in chloroplasts, but it rather suggests that other mechanisms can counteract or prevent overreduction of the chloroplast.The existence of a second MDH isoform in plastids, which uses NAD as cofactor, has been questioned, because it could not be ruled out that NAD-MDH activity detected in isolated chloroplasts was caused by contamination from other organelles (Siebke et al., 1991; Backhausen et al., 1998). In 1998, Berkemeyer et al. (1998) reported the cloning, heterologous expression, and in vitro characterization of a pdNAD-MDH from Arabidopsis (At3g47520). In contrast to NADP-MDH, pdNAD-MDH is active under both light and dark conditions in isolated chloroplasts, and the activities of both enzymes are within the same range in the light (Backhausen et al., 1998; Berkemeyer et al., 1998). However, up to now, genetic evidence for the in vivo function of pdNAD-MDH is missing, and experimental data are scarce. Backhausen et al. (1998) showed that chloroplasts and heterotrophic chromoplasts isolated from different sources followed by incubation in the dark concomitantly produced 3-phosphoglycerate and malate on addition of dihydroxyacetone phosphate and OAA to the medium. It was proposed that 3-phosphoglycerate production was in a glycolytic step involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and that pdNAD-MDH regenerates the electron acceptor NAD required by GAPDH through reduction of OAA to malate, thus operating the malate-OAA shuttle in the dark and in nongreen tissues (Scheibe, 2004; Taniguchi and Miyake, 2012).Here, we aimed to evaluate the function of this MDH isoform in plastid metabolism by analyzing Arabidopsis plants with a transposon insertion in the pdNAD-MDH gene and Arabidopsis plants with reduced pdNAD-MDH by means of artificial microRNA silencing.  相似文献   

17.
The retina is characterized by glycolysis under aerobic conditions, mediated by lactate dehydrogenase isoenzyme-5 (LDH-5) as well as by the soluble isoenzyme of malate dehydrogenase. Bovine retina LDH and MDH isoenzymes and their activities were studied after polyamine treatment. Our results showed that LDH-5 isoenzyme presented the highest activity in untreated as well as in putrescine-treated retina. Decreased activity was present when the retina was treated with spermidine or spermine. It was demonstrated that retinic LDH-5 had a high affinity for lactate which enabled the isoenzyme to be more effective than the other LDH isoenzymes in the conversion of NADH to NAD. Therefore, the putrescine enhancing LDH-5 activity appeared to be capable of stimulating NAD-mediated rhodopsin regeneration. Putrescine induced a marked increase of both MDH isoenzymes--soluble (s-MDH) and mitochondrial (m-MDH), while spermine and spermidine mostly affected the soluble form of the enzyme. Putrescine induced a three-fold increase in s-MDH and m-MDH activities, while spermine and spermidine induced a four to five-fold increase in s-MDH. These results document the differential effects of polyamine treatment on LDH and MDH isoenzyme activities.  相似文献   

18.
Amide content, ATP level and activities of enzymes linked to malate metabolism were determined in leaves of three successive flushes of common oak during the development of the third flush. In the expanding leaves, all studied enzymes showed a maximum activity around the 7th day after budbreak. Phosphoenolpyruvate carboxylase (PEPc), NAD-malate dehydrogenase (MDH) and NADP-malic enzyme (ME) maintained high activity up to full leaf expansion. In contrast, fumarase (FUM), pyruvate kinase (PK) and NADP-MDH activities sharply decreased to reach, on the 10th day after budbreak, the same low activity levels as those measured in mature leaves. Two patterns were observed in oak leaves during growth. Firstly (7th–10th day after budbreak), PK, FUM and NADP-MDH could contribute to the supply of ATP through glycolysis and Krebs cycle; the ATP profile corroborated those results. Secondly (after the 10th day), the maintenance of an active PEPc pathway led to a respiratory CO2 refixation and provided carbon skeletons for amino acid synthesis. Furthermore, nitrate reductase (NR) activity was high in young oak leaves. Slight changes in activities of NR as well as NAD(P)-ME, NAD(P)-MDH can be noted on days 7 and 10 after budbreak in the mature leaves. These changes could be necessary in supplying the third flush with amino acids. These data suggest that MDH, ME, PK and PEPc have important functions in the young leaves which are not directly linked to C3 photosynthesis but rather to nitrate assimilation and malate provision to mitochondria.  相似文献   

19.
Like many other bacteria, Corynebacterium glutamicum possesses two types of L-malate dehydrogenase, a membrane-associated malate:quinone oxidoreductase (MQO; EC 1.1.99.16) and a cytoplasmic malate dehydrogenase (MDH; EC 1.1.1.37) The regulation of MDH and of the three membrane-associated dehydrogenases MQO, succinate dehydrogenase (SDH), and NADH dehydrogenase was investigated. MQO, MDH, and SDH activities are regulated coordinately in response to the carbon and energy source for growth. Compared to growth on glucose, these activities are increased during growth on lactate, pyruvate, or acetate, substrates which require high citric acid cycle activity to sustain growth. The simultaneous presence of high activities of both malate dehydrogenases is puzzling. MQO is the most important malate dehydrogenase in the physiology of C. glutamicum. A mutant with a site-directed deletion in the mqo gene does not grow on minimal medium. Growth can be partially restored in this mutant by addition of the vitamin nicotinamide. In contrast, a double mutant lacking MQO and MDH does not grow even in the presence of nicotinamide. Apparently, MDH is able to take over the function of MQO in an mqo mutant, but this requires the presence of nicotinamide in the growth medium. It is shown that addition of nicotinamide leads to a higher intracellular pyridine nucleotide concentration, which probably enables MDH to catalyze malate oxidation. Purified MDH from C. glutamicum catalyzes oxaloacetate reduction much more readily than malate oxidation at physiological pH. In a reconstituted system with isolated membranes and purified MDH, MQO and MDH catalyze the cyclic conversion of malate and oxaloacetate, leading to a net oxidation of NADH. Evidence is presented that this cyclic reaction also takes place in vivo. As yet, no phenotype of an mdh deletion alone was observed, which leaves a physiological function for MDH in C. glutamicum obscure.  相似文献   

20.
Guard cell protoplasts of Pisum sativum show considerable NADP-dependent malate dehydrogenase (MDH) activity in darkness which can be enhanced severalfold by illumination or treatment with dithiothreitol (DTT). The question arose whether guard cells possess an NADP-MDH different from that present in the chloroplasts of the mesophyll (which is inactive in darkness or in the absence of DTT). MDH activities were determined in extracts of isolated protoplasts from mesophyll and epidermis, and in mechanically prepared epidermal pieces (with guard cells as the only living cells and no interference from proteases originating from the cell wall digesting enzymes). Guard cells possessed NAD-dependent MDHs of high activity and incomplete exclusion of NADP as a coenzyme. This NADP-dependent activity of the NAD-MDH(s) could not be stimulated by DTT or, inferentially, by light. The DTT- (and light-) dependent NADP-MDH represented 0.05% of the total protein of the guard cells and had a specific activity of 0.1 unit per milligram protein; both values are in the same range as the corresponding ones of the mesophyll cells. Agreement was also found in the extent of light activation, in subunit molecular weight, immunological cross-reactions, and in the behavior on an ion exchange column. The activity of the chloroplastic NADP-MDH in guard cells barely suffices to meet the malate requirement for stomatal opening in the light. It is therefore likely that NAD-MDHs residing in other compartments of the guard cells supplement the activity of the chloroplastic NADP-MDH particularly during stomatal opening in darkness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号